
Abstract of thesis entitled

Optimization and Differential Geometry

for Geometric Modeling

Submitted by

LIU Yang

for the degree of Doctor of Philosophy

at The University of Hong Kong

in September 2008

Nowadays “Geometry Modeling and Computer Graphics” has grown into a
cross-disciplinary research area. It has shown its powerful applicability in computer
aided design, scientific visualization, computer animation and other fields. One of im-
portant and interesting topics is “finding optimal geometric structures and shapes” which
covers curve and surface approximation, shape reconstruction and shape modeling by
polyhedral meshes, mesh generation, etc... , and mainly solved by geometrical and opti-
mization techniques.

This thesis first investigates the problem of orthogonal distance fitting of a point cloud
by parametric curves and surfaces. The fitting problem is considered as an optimization
problem and the geometric aspects in the traditional Newton-like and Gauss-Newton
methods are studied. The study shows how the better geometric understanding benefits
the development of fast optimization algorithms. Based on the consideration of local ge-
ometric properties, several existing methods(PDM, TDM) are classified and novel meth-
ods(SDM, GTDM, CDM) are proposed. The demonstrated super-linear convergence and
good performance of novel methods are very useful and efficient in parametric curve and
surface fitting. Moreover, the geometric optimization analysis is successfully applied
in constrained 3D shape reconstruction by combining enhanced fitting and registration
techniques.

The second part of this thesis studies a well-known technique–“Centroidal Voronoi Tes-
sellation”(CVT) from the numerical optimization point of view. A nice property is
revealed and proved that the 2D/3D CVT function in a convex domain is actually C2.
Based on this property, Newton-like or Quasi-Newton methods are applied to speed
up CVT computation and achieve superlinear convergence comparing to the classical
Lloyd’s method. Similar analysis and algorithms are also applied in constrained/re-
stricted Centroidal Voronoi Tessellation for triangular meshes.

The geometric and aesthetical demands from architecture motivate the study of geo-
metric modeling and processing. In architectural freeform design, the relation between

shape and fabrication poses new challenges and requires more sophistication from the
underlying geometry. The last part of this thesis proposes new concepts: conical meshes,
circular meshes and edge-parallel meshes in the context of parallel meshes. These new
types of meshes provide a novel approach to approximate and model geometric shape
with nice face/vertex/edge-offset properties and orthogonal support structure for fabri-
cation. The geometric realization of these concepts involves quadrilateral meshing by
principle curvature networks, face planarization of meshes by numerical optimization.
Also mesh parallelism is the main ingredient in a novel discrete theory of curvatures,
the proposed methods in this thesis are applied to the construction of quadrilateral,
pentagonal and hexagonal meshes, discrete minimal surfaces, discrete constant mean
curvature surfaces and their geometric transforms.

The methods and concepts introduced in this thesis are essential and effective. The
unified parametric curve and surface fitting presents a clear way to understand geometric
meaning of optimization techniques and develop fast algorithms. The fast computation
of CVT has a good potential to replace Lloyd’s method in geometry modeling and
meshing generation. The proposed methods and concepts of parallel meshes are powerful
tools for designing geometric shape in architecture applications.

[499 Words]

Optimization and Differential Geometry

for Geometric Modeling

by

LIU Yang

A thesis submitted for

the Degree of Doctor of Philosophy

at The University of Hong Kong.

September 2008

http://i.cs.hku.hk/~yliu/

Declaration

I declare that this thesis represents my own work, except where due acknowledgement

is made, and that it has not been previously included in a thesis, dissertation or report

submitted to this University or to any other institution for a degree, diploma or other

qualifications.

Signed:

Date:

iii

2008-09-07

“Mighty is geometry; joined with art; resistless.”

Euripides (485-406 B.C)

Acknowledgements

It is my pleasure to acknowledge the people who made this thesis possible.

First I would like to thank my PhD supervisor Prof. Wenping Wang for his great guidance

and continuous support on my research. His enthusiasm for research inspires me to work

hard to achieve better results.

Part of my work is collaborated with Prof. Helmut Pottmann and Prof. Johannes Wall-

ner. I wish to thank them for their excellent guidance in geometry and kind help when

I was in Vienna.

Special thanks go to my Master supervisors Prof. Falai Chen and Prof. Yuyu Feng, who

led me to computational mathematics and computer graphics fields, and support my

research always.

I am very grateful to all my friends from HKU, USTC and colleagues at TU Wien.

Without them, I could not enjoy the joyful life during these years. My thanks go to

Bin Chan, Yi-King Choi, Cheng Kin Shing Dominic, Huaiping Yang, Kelvin Lee, Dayue

Zheng, Qi Su, Chen Liang, Xi Luo, Dongming Yan, Pengbo Bo, Lin Lu, Hui Zhang, Feng

Sun, Yufei Li, Ruotian Ling, Li Cao, Liyong Shen, Zuoqin Wang, Martin Peternell, Niloy

Mitra, Heinz Schmiedhofer.

Finally I would like to dedicate this thesis to my parents and my wife for their love,

never-ending support and long-time waiting.

v

Contents

Declaration iii

Acknowledgements v

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 3

2 Fitting B-spline Curves to Point Clouds by SDM 5
2.1 Problem Formulation . 5
2.2 Related Work . 6

2.2.1 Spline curve fitting techniques . 6
2.2.2 Second order approximation to squared distance function 10

2.3 Fitting a B-spline Curve to a Point Cloud Using SDM 11
2.3.1 A new quadratic approximation to the squared distance 12
2.3.2 Main steps of SDM . 13

2.4 Experiments and Comparison . 14
2.5 Implementation Issues . 19

2.5.1 Initialization and adjustment of control points 19
2.5.2 Fast setup of error terms . 20
2.5.3 Fitting an open B-spline curve . 21

2.6 Discussion from Viewpoint of Optimization 24
2.6.1 PDM as an alternating method . 25
2.6.2 TDM – Gauss-Newton iteration and its variants 26
2.6.3 SDM – a quasi-Newton method . 29
2.6.4 Step size control . 32

2.7 Concluding Remarks . 33

3 Constrained 3D Shape Reconstruction 35
3.1 Introduction . 35

3.1.1 Previous work . 36
3.1.2 Contributions . 36

3.2 Fundamentals of SDM . 37

vii

Contents viii

3.2.1 Squared distance function of a surface 37
3.2.2 Registration using SDM . 38
3.2.3 SDM for B-spline surface fitting 40
3.2.4 TDM and PDM . 41

3.3 Combination of Surface Fitting and Registration 42
3.4 Applications . 44

3.4.1 Surfaces of revolution . 44
3.4.2 Spiral surfaces . 46
3.4.3 Constrained 3D shape reconstruction 48

3.4.3.1 Constrained fitting to a single set of data points 48
3.4.3.2 Constrained fitting to multiple views 49

3.4.4 Remarks on the implementation 49
3.5 Conclusions . 54

4 Least Squares Orthogonal Distance Fitting of Parametric Curves and
Surfaces 55
4.1 Introduction . 55
4.2 Preliminary . 56

4.2.1 Notation . 56
4.2.2 Nonlinear least squares . 57
4.2.3 Principal directions and curvatures of parametric curves and sur-

faces . 58
4.3 Orthogonal Distance Fitting . 58

4.3.1 Distance-based Gauss-Newton method 59
4.3.2 Coordinate-based Gauss-Newton method 61
4.3.3 SDM - modified Hessian approximation 65
4.3.4 Comparisons . 65

4.4 Numerical Experiments . 67
4.5 Conclusions . 68

5 Computing Centroidal Voronoi Tessellation with Superlinear Conver-
gence 71
5.1 Introduction . 71

5.1.1 Problem setting and previous work 71
5.1.2 The variational point of view . 73

5.2 Continuity Analysis . 76
5.2.1 Variational formulation . 76
5.2.2 Smoothness of F . 77
5.2.3 Experimental evidence of continuity 77

5.3 Numerical Optimization . 78
5.3.1 Numerical examples . 80

5.4 CVT on Polyhedral Surfaces . 83
5.4.1 Constrained and restricted CVT 83
5.4.2 C2 smoothness . 84
5.4.3 Implementation . 85
5.4.4 Experiments . 87

5.5 Appendix: Proof of Theorem 5.2 . 88

Contents ix

6 Geometric Modeling with Conical Meshes and Developable Surfaces 95
6.1 Introduction . 95

6.1.1 Previous work . 95
6.1.2 Contributions and overview . 98

6.2 PQ Meshes and PQ Perturbation . 99
6.2.1 PQ meshes . 100
6.2.2 PQ perturbation . 101

6.3 Subdividing Developables and PQ Meshes 105
6.4 Conical Meshes . 105
6.5 Computing Conical Meshes . 111
6.6 Results and Discussion . 113
6.7 Conclusion and Future Work . 116
6.8 Appendix: An Angle Criterion for Conical Mesh Vertices 117

6.8.1 Conical vertices . 117
6.8.2 Convex spherical quadrilaterals . 119
6.8.3 General spherical quadrilaterals . 121

7 Geometry of Multi-layer Freeform Structures for Architecture 129
7.1 Introduction . 129
7.2 Mesh Parallelism for Architecture . 132

7.2.1 Motivation and introduction . 132
7.2.2 Basics of mesh parallelism . 136

7.3 Offset Meshes . 138
7.3.1 Types of exact offset meshes . 139
7.3.2 Meshes with edge offsets . 140
7.3.3 Designing with EO meshes . 142

7.4 Optimizing Support Structures . 145
7.4.1 Approximate offsets . 145
7.4.2 Offset meshes by optimization in P(M) 145
7.4.3 A processing pipeline from shape to beam layout 146
7.4.4 Other ways of optimization . 149

7.5 Curvatures in Meshes with Planar Faces 150
7.6 Discussion . 154

8 Conclusion and Future Research 157
8.1 Principal Contributions . 157
8.2 Future Research . 158

Bibliography 159

List of Figures

1.1 Parametric curve and surface fitting . 1
1.2 Architecture design by planar quadrilateral and hexagonal meshes 3

2.1 Iso-values curves of the point distance (PD) error term. 8
2.2 Iso-values curves of the tangent distance (TD) error term. 8
2.3 TD error at high curvature point . 9
2.4 The squared distance function . 10
2.5 The SD error term eSD,k(D) . 13
2.6 Example 2.1 . 15
2.7 Example 2.2 . 16
2.8 The evolution surfaces of Example 2.2 . 17
2.9 Example 2.3 . 18
2.10 Example 2.4 . 18
2.11 Foot-point computation on a fitting curve. 21
2.12 Deriving an error term for an outer data point X. 21
2.13 Fitting a Chinese character . 22
2.14 Comparison for fitting an open curve . 23
2.15 Reconstruction of a revolution surface . 24
2.16 The alternating minimization steps of PDM near a local minimum 33
2.17 TDM using the Armijo rule for step size control 33

3.1 Approximation of an archeological finding by a rotational surface 45
3.2 Approximation of a broken archeological finding by a rotational surface . 46
3.3 Shell reconstruction . 47
3.4 Machine part . 50
3.5 Comparison for the machine part . 51
3.6 Variations of the parameters for the machine part model in Figure 3.4. . . 51
3.7 Multiple scans of the tesa model . 52
3.8 Registration and reconstruction of the tesa model 52
3.9 Multiple scans of a CAD model . 53
3.10 Registration and reconstruction of the CAD model 53

4.1 The initial ellipse and data points of Case 4. 69
4.2 Comparisons of the six methods on a set of 200 data points 69

5.1 Critical points in a square . 76
5.2 A 2D non-convex CVT after several Lloyd’s iterations 78
5.3 Illustration of 2D CVT smoothness . 79
5.4 Illustration of 3D CVT smoothness. 80

xi

List of Figures xii

5.5 Example 5.3 . 81
5.6 Example 5.4 . 82
5.7 Voronoi diagrams and their dual . 86
5.8 CCVT of David model . 88
5.9 CCVT of Homer model . 89
5.10 Geometric analysis of the CVT energy function F ’s continuity 92

6.1 Conical meshes . 96
6.2 PQ strip for a developable surface . 99
6.3 Visualization of conjugacy via shadow contours. 99
6.4 Various conjugate networks and their suitability for meshing purposes . . 100
6.5 PQ perturbation without a closeness term applied to a highly un-planar

mesh consisting of only a few quads. 103
6.6 PQ perturbation acting on a quad-dominant mesh 104
6.7 (a)–(c): Hierarchy of PQ meshes obtained by iterative application of

Catmull-Clark subdivision and PQ perturbation. 106
6.8 Developable subdivision surfaces . 106
6.9 Developable Möbius band in the shape of a trefoil knot 107
6.10 Configuration of the faces of a conical mesh at a vertex 107
6.11 A conical mesh has conical offset meshes 109
6.12 A conical mesh discretizes the network of principal curvature lines 110
6.13 Principal curves computed with different kernel radii. 112
6.14 Catmull-Clark subdivision and conical optimization 113
6.15 Design studies with conical meshes and their offset meshes produced by

subdivision and conical perturbation . 114
6.16 Design studies with developable surfaces 115
6.17 Circular mesh generated by optimizing a mesh generated from principal

curves (top right). 116
6.18 Conical vertex of valence four . 118
6.19 A convex spherical quad . 119
6.20 Elliptic, parabolic, hyperbolic vertices and their associated spherical quadri-

laterals . 122
6.21 Stereographic images of four oriented great circles on the unit sphere . . . 123
6.22 Converting an elliptic configuration into a parabolic configuration 124
6.23 An admissible parabolic quad having an incircle. 125
6.24 A parabolic admissible quad satisfying the angle criterion. 126

7.1 Architectural free form structure . 130
7.2 Multi-layer constructions . 132
7.3 Meshes M,M′ with planar faces are parallel if they are combinatorially

equivalent, and corresponding edges are parallel. 134
7.4 Nodes, supporting beams, and the underlying geometric support structure

of a steel/glass construction . 135
7.5 The set P(M) of meshes parallel to a given meshM is a linear space and

can be explored by a linear blend of some of its elements. 136
7.6 This construction is based on an edge offset mesh and has beams of con-

stant height . 138

List of Figures xiii

7.7 This geometric support structure is defined by two parallel meshes which
are not of constant edge-edge distance . 138

7.8 A mesh M with an edge offset mesh M′ at distance d 140
7.9 A Koebe polyhedron and related circles and cones. 141
7.10 Creation of the mesh M′ which Figure 7.1 is based on 142
7.11 Edge offset mesh of negative curvature . 144
7.12 Assign a geometric support structure to a given mesh M 146
7.13 Finding a support structure . 147
7.14 Meshing and construction of a support structure with optimized nodes . . 148
7.15 These two systems of ‘approximate normal vectors’ of a mesh M are

defined by a Gauss image S . 150
7.16 Parallel polygons with vertices pi, qi, and pi + dqi. 151
7.17 Construction of simple minimal quad meshes via parallelity of diagonals . 153
7.18 A discrete minimal EO mesh . 154
7.19 This design with convex faces is composed from pieces of discrete cmc

surfaces obtained in different ways . 155

Dedicated to my parents and my wife

xv

Chapter 1

Introduction

1.1 Motivation

With the rapid development of 3D model acquisition and advanced demands from in-

dustry and entertainment, the study of geometric modeling and processing becomes a

hot research area in computer graphics and applied geometry. The main topics include

shape representation, shape reconstruction, mesh processing, differential geometry in

discrete setting, optimal geometry design, etc.

Figure 1.1: Left: Fitting an open B-spline Curve to a given point cloud [82]; right:
Fitting a parametric surface to a point cloud scanned from a seashell.

Shape approximation and registration

A common subject among the various topics is finding an optimal solution in the con-

sideration of geometry and economy, for instance, locating the best positions of control

points of a spline surface to approximate a point cloud, determining the model param-

eters for shape reconstruction (See examples in Figure 1.1). One important issue is the

efficiency and accuracy of optimization algorithms employed in geometric modeling and

processing. Good understandings of the relationship between underlying geometry and

1

Chapter 1. Introduction 2

optimization theory would benefit the development of powerful geometry processing al-

gorithms and tools. However, related study is somehow lacking in computer graphics

community and traditional methods [67, 68] which only exhibits linear convergence, are

still employed in most applications. In this thesis, a novel study of parametric shape

reconstruction and model registration is presented clearly in the numerical optimization

framework, and several super-linear algorithms are proposed and demonstrated. The

concepts and algorithms can be easily integrated into most applications in computer

graphics and geometric modeling.

Centroidal Voronoi Tessellation

Centroidal Voronoi Tessellation (CVT) is a powerful technique in many scientific and

engendering fields, such as mesh generation and image segmentation. In practice the

classical Lloyd’s method [86] is quite popular but only presents linear convergence [48].

A major impediment to the development of superlinear methods for CVT computation

is the popular, but wrong, perception that the CVT energy function, as a piecewise

function, is not smooth enough. However, we prove that the energy function of the

2D/3D CVT in a convex domain is C2. Motivated and justified by this surprising result,

we propose quasi-Newton optimization techniques for computing CVT with superlinear

convergence.

Geometry in architecture

Nowadays geometric modeling is a key component in industrial and architecture design.

Many geometric, aesthetical and economical demands rise in the design and manufacture

process. In architectural freeform design, the relation between shape and fabrication

poses new challenges and requires more sophistication from the underlying geometry,

such as designing planar quadrilateral meshes for freeform glass structures [56]. But

there is only little attempt in previous work of mesh processing and discrete differential

geometry, where the study focuses on triangular meshes [40]. In this thesis, several

novel geometric concepts and practical algorithms in the context of discrete differential

geometry are proposed, including conical meshes, edge-offset meshes, and polygonal

meshes planarization. A new concept – “parallel meshes” which include conical meshes,

circular meshes and edge-offset meshes provides a unified framework for modeling and

computation. Moreover, parallel meshes are the main ingredient in a novel discrete

theory of curvatures, which is used to design discrete mean-curvature surfaces, minimal

surfaces and polygonal meshes with geometrically optimal properties (see examples in

Figure 1.2).

Chapter 1. Introduction 3

Figure 1.2: Architecture design by a planar quadrilateral mesh [113] and a planar
hexagonal mesh [121].

1.2 Outline

This thesis addresses several problems of geometry and optimization in geometric mod-

eling and it is organized as follows:

Chapter 2 presents a novel and efficient method, called squared distance minimiza-

tion(SDM), for computing a planar B-spline curve to approximate a target shape defined

by a point cloud. The theory and experiments show that SDM significantly outperforms

other existing methods; (The presented material has been published in [151].)

Chapter 3 investigates 3D shape reconstruction from measurement data in the pres-

ence of constraints. The constraints may fix the surface type or set geometric relations

between parts of an object’s surface, such as orthogonality, parallelity. It is proposed to

use a combination of surface fitting and registration within the geometric optimization

framework of squared distance minimization(SDM). (The presented material has been

published in [84].)

Chapter 4 systematically analyzes existing least squares orthogonal distance fitting

Chapter 1. Introduction 4

techniques in a general numerical optimization framework. The connections between

the underlying geometry and Newton/Gauss-Newton methods are revealed. Two geo-

metric variant methods(GTDM and CDM) are proposed. (The presented material has

been published in [85].)

Chapter 5 studies the fast computation of “Centroidal Voronoi Tessellation”(CVT).

The 2D/3D CVT function is proved to be C2 and Quasi-Newton methods are applied

to speed up CVT computation.

Chapter 6 proposes a new concept – “conical meshes” which are suitable for the design

of freeform glass structure. They are tightly connected with principal curvature network

which provides an initialization tool for creating conical meshes. With the perturbation

and subdivision techniques, a powerful modeling tool for designing planar quadrilateral

meshes is presented. (The presented material has been published in [83] and [152].)

Chapter 7 deals with the geometric challenges in the architectural design of freeform

shapes come mainly from the physical realization of beams and nodes via the concepts

of parallel meshes and geometric optimization methods. (The presented material has

been published in [121].)

Chapter 8 summarizes the thesis and concludes possible future research.

Chapter 2

Fitting B-spline Curves to Point

Clouds by Curvature-Based

Squared Distance Minimization

2.1 Problem Formulation

We consider the following problem: Given a set of unorganized data points Xk, k =

1, 2, . . . , n, in the plane, compute a planar B-spline curve to approximate the points

Xk. The data points Xk are assumed to represent the shape of some unknown planar

curve, which can be open or closed, but not self-intersecting; this curve is called a target

curve or target shape. We suppose that unorganized data points, often referred to as

a point cloud or scattered data points in literature, may have non-uniform distribution

with considerable noise; this assumption makes it difficult or impossible to order data

points along the target curve. Hence, we assume that such an ordering is not available.

The above problem can be formulated as a nonlinear optimization problem as follows.

Consider a B-spline curve P (t) =
∑m

i=1 PiBi(t) with control points Pi. We assume

throughout that the order and the knots of the B-spline curve are fixed, so they are

not subject to optimization. This simplifying assumption allows us to give a clear

explanation of the general idea of our new optimization scheme. The very same idea of

optimization presented here can also be extended to the more general setting of fitting

a NURBS curve with free weights and knots to be optimized, by variable linearization

and inequality constraints. 1

1More general analysis is studied in Chapter 4.

5

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 6

Given data points Xk, k = 1, 2, . . . , n, we want to find the control points Pi, i =

1, 2, . . . ,m, such that the objective function

f =
1
2

n∑
k=1

d2(P (t), Xk) + λfs (2.1)

is minimized, where d(P (t), Xk) = mint ||P (t) − Xk|| is the distance of the data point

Xk to the curve P (t), fs is a regularization term to ensure a smooth solution curve and

λ is a positive constant to modulate the weight of fs. Here the distance d(P (t), Xk)

is measured orthogonal to the curve P (t) from Xk. The exceptional case where the

shortest distance from Xk to an open curve P (t) occurs at an endpoint of P (t) will be

discussed separately in Section 2.5.

We present a novel method that approximates unorganized data points with a B-spline

curve that starts with some properly specified initial curve and converges through iter-

ative optimization towards the target shape of data points. One of our contributions is

the introduction of a novel error term defined by a curvature-based quadratic approxi-

mant of squared distances from data points to the fitting curve. For brevity, this new

error term is called the squared distance error term or SD error term, and the resulting

iterative minimization scheme will be referred to as squared distance minimization or

SDM. Because the SD error term measures faithfully the geometric distance between

data points and the fitting curve, SDM converges fast and stably, in comparison with

other commonly used error terms, as will be discussed shortly.

2.2 Related Work

2.2.1 Spline curve fitting techniques

Fitting a curve to a set of data points is a fundamental problem in graphics (e.g., [58, 104,

107, 122, 149]) and many other application areas. Instead of attempting a comprehensive

review, we will only discuss some main results in the literature to provide a background

for our work.

Let Xk ∈ R2, k = 1, 2, . . . , n, be unorganized data points representing a target shape,

which is to be approximated by a closed or open planar B-spline curve P (t) =
∑m

i=1Bi(t)Pi,

where the Bi(t) are the B-spline basis functions of a fixed order and knots, and the Pi
are the control points. Since f in Equation. (2.1) is a nonlinear objective function,

iterative minimization comes as a natural approach. Suppose that we have a specific B-

spline curve Pc(t) =
∑m

i=1Bi(t)Pc,i with control points Pc = (Pc,1, Pc,2, . . . , Pc,m), which

can be an initial fitting curve or the current fitting generated from the last iteration.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 7

Let D = (D1, D2, .., Dm) be the variable updates to Pc to give the new control points

P+ = Pc+D. Let P+(t) =
∑m

i=1Bi(t)(Pc,i+Di) denote the B-spline curve with updated

control points P+.

Many existing B-spline curve fitting methods invoke a data parameterization procedure

to assign a parameter value tk to each data point Xk. In some methods dealing with

ordered data points, the chord length method or the centripetal method [52, 68, 79] is

used for data parameterization. Then, with the fixed tk, the function

f̂ =
1
2

∑
k

||P+(tk)−Xk||2 + λfs, (2.2)

which is a local quadratic model of f in (2.1), is minimized by solving a linear system

of equations to yield updated control points P+, and hence the updated fitting curve

P+(t).

A commonly used data parameterization method is to choose tk such that Pc(tk) is the

closest point from the current fitting curve to the data point Xk; (Pc(tk) is also called

the foot point of Xk on the curve Pc(t)). Then an iterative method can be developed

by interleaving this step of foot point computation with the minimization of the local

quadratic model f̂ in (2.2) to compute the updated control points P+. Note that the

error term ||P+(tk) − Xk||2 in (2.2) measures the squared distance between the data

point Xk and a particular point P+(tk) on the fitting curve to be determined; therefore,

we will call this error term the point distance error term or the PD error term, and

denote it by

ePD,k = ||P+(tk)−Xk||2. (2.3)

(The PD error term is illustrated in Figure 2.1.) This minimization scheme will be

called the point distance minimization or PDM for short. Note that, since the ordering

of data points is not required for data parameterization via foot point projection, PDM

is applicable to fitting a curve to a point cloud.

Hoschek [67] proposes an iterative scheme, called intrinsic parameterization, which also

uses the PD error term but performs parameter correction using a formula that is a first-

order approximation to exact foot point computation. Bercovier and Jacob [12] prove

that the intrinsic parameterization method is equivalent to Uzawa’s method for solving

a constrained minimization problem, but they do not establish the convergence rate of

the intrinsic parameterization method or that of PDM. Higher order approximation or

accurate computation of foot points for data parameterization are discussed in [68, 69,

127].

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 8

PDM, or its simple variants, are the most commonly applied method for curve fitting

in computer graphics and CAD [58, 67, 107, 127]. The same idea of PDM is also widely

used for surface fitting [41, 54, 59, 60, 65, 66, 88, 90, 140, 153, 154], with B-spline

surfaces as well as other types of surfaces. The popularity of PDM might be explained

by its simplicity — the error term ePD,k in (2.3) is derived by simply substituting tk in

the squared distance d2(P (t), Xk) in the original objective function f in (2.1). However,

considering that P (tk) is a variable point depending on the variable control points, ePD,k
is a rather poor approximation to d2(P (t), Xk), thus causing slow convergence.

PD error

Xk

d

P
+
(tk)

Figure 2.1: Iso-values curves
of the point distance (PD) error

term.

TD error

Xk

d

P
+
(tk)

Figure 2.2: Iso-values curves of
the tangent distance (TD) error

term.

Another error term, often used in the computer vision community (e.g., [15]), is defined

by

eTD,k = [(P+(tk)−Xk)TNk]2, (2.4)

where Nk is a unit normal vector of the current fitting curve Pc(t) at the point Pc(tk).

We will call eTD,k the tangent distance error term or the TD error term, since eTD,k
gives the squared distance from Xk to the tangent of Pc(t) at the foot point Pc(tk) when

P+(t) is Pc(t). The TD error term is illustrated in Figure 2.2.

The TD error term eTD,k = [(P+(tk) − Xk)TNk]2 can also be combined with data

parameterization via foot point projection to yield a B-spline curve fitting method, as

used in [15] for boundary extraction in motion tracking. We will call this method tangent

distance minimization or TDM. TDM minimizes in each iteration the function

fTD =
1
2

∑
k

eTD,k + λfs. (2.5)

Treating the control points P+ as variables to be optimized, the TD error term measures

the squared distance from the point Xk to a moving straight line Lk that has the fixed

normal vector Nk and passes through the moving point P+(tk). See Figure 2.3. The

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 9

P+(t
k
)

X
k

d

Pc(tk
)

X
k

d

Lk Lk

Figure 2.3: In a neighborhood of a high curvature point, the true approximation error
can be rather big even when the TD error d is small.

TD error eTD,k = [(P+(tk)−Xk) ·Nk]2 becomes zero if the point Xk is contained in the

line Lk. On the other hand, the line Lk is a relatively poor approximation to the curve

P+(t) in a neighborhood of a high-curvature point P+(tk) or if Xk is far from P+(tk).

Hence, in these cases, the point Xk may still be poorly approximated by the curve P+(t)

even if Xk is nearly on Lk, i.e., when the TD error [(P+(tk)−Xk) ·Nk]2 is nearly zero

(see Figure 2.3).

This disparity between approximation quality and error measurement is the cause of the

instability of TDM near a high-curvature part of the target shape, as will be illustrated

later with test examples. This unstable behavior of TDM is, in fact, the consequence

of using an inappropriately large step size to solve a nonlinear optimization problem;

indeed, we will show that TDM uses Gauss-Newton iteration for solving a nonlinear

least-squares problem and its excessively large step size is due to omission of important

curvature related parts in the true Hessian.

Now let us consider the geometric interpretations of the PD error term and the TD

error term. Since Pc(tk) is the fixed foot point on the current fitting curve Pc(t) of

Xk, if P+(t) is the same as Pc(t) then both ePD,k and eTD,k give the same value of

d2(Pc(tk), Xk). However, for optimization purpose, we need to regard d2(P+(tk), Xk) as

a function of variable control points P+, and in this sense ePD,k and eTD,k give very

different approximations to d2(P+(tk), Xk).

If treating Xk as a free point, for any constant c > 0, the iso-value curve ePD,k ≡
||P+(tk)−Xk||2 = c of the PD error term is a circle (see Figure 2.1), and the iso-value

curve eTD,k ≡ [(P+(tk) − Xk) · Nk]2 = c of the TD error term is a pair of parallel

lines, which can be regarded as a degenerate ellipse (see Figure 2.2). Since PDM has

relatively slow convergence and TDM tends to have fast but unstable convergence, one

may speculate whether or not a new error term with ellipse-shaped iso-value curves can

be devised to yield a more balanced performance between efficiency and stability. We

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 10

(0,r)

x

y

X0

O

d

Figure 2.4: A second order approximant of the squared distance function to the curve
C at X0.

will see that such an error term is naturally provided by a curvature-based quadratic

approximation to the squared distance function.

2.2.2 Second order approximation to squared distance function

Given a curve C in R2, one may define the squared distance function that assigns to each

point X in R2 the squared distance from X to C. The second order approximation to

this distance function is given in [6]. This approximation is then studied in detail and

applied to solving a number of shape fitting problems in [111, 116]. Below we review

this work briefly.

Let O be the closest point on a twice differentiable curve C to a fixed point X0 (see

Figure 2.4). Consider the local Frenet frame of C with its origin at O and its two

coordinate axes being the tangent vector and the normal vector of the curve C at O.

Let ρ > 0 be the curvature radius of C at O. We use an orientation of the curve normal

such that K = (0, ρ)T is the curvature center of C at O. Let d be the signed distance

from X0 to O, i.e., |d| = ||X0 −O|| with d < 0 if X0 and K are on opposite sides of the

curve C, and d > 0 if X0 and K are on the same side of C. We note that there is always

d < ρ when d > 0, for otherwise O cannot be the closest point on the curve C to X0.

Consider a point X = (x, y)T in a neighborhood of X0. The second order approximant

of the squared distance from X to the curve C is [6, 111]

g(x, y) =
d

d− ρx
2 + y2. (2.6)

Geometrically, the conic section g(x, y) = d2 has second order contact with the offset

curve of the target curve C that passes through X0.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 11

Since g(x, y) in (2.6) is indefinite when 0 < d < ρ, the unified expression

ĝ(x, y) =
|d|
|d|+ ρ

x2 + y2 (2.7)

is used in [116] as a positive semi-definite quadratic error term for solving geometric op-

timization problems. An alternative to this modification is to replace the first coefficient

d/(d − ρ) by max{0, d/(d − ρ)}, thus also making the distance measurement positive

semi-definite in all cases.

The above approximation to the squared distance of a smooth target curve is used in

[116] for fitting a B-spline curve to the target curve as follows. Given a target curve

to be approximated and the current B-spline fitting curve Pc(t) with control points

Pc = {Pc,i}, a set of densely distributed points Sk, called sensor points, are first sampled

on Pc(t). Then the approximate squared distance fk(Sk) defined by (2.7) from each

sensor point Sk to the fixed target curve is computed. Let P+ = Pc + D denote the

updated control points of the B-spline fitting curve, where D are the incremental updates

to the current control points Pc. The error term associated with each sensor point is

defined as

êk = ĝ(Sk(P+)), (2.8)

which is quadratic in the control points P+, since each Sk is a linear combination of

the control points. Then the local error function f = 1
2

∑
k êk + λfs, where fs is a

regularization term that is quadratic in P+, is minimized to find the updated control

points P+ by solving a linear system of equations. This minimization step is iterated to

make the fitting curve P (t) move towards the target curve.

The superior efficiency of the above curve fitting scheme comes from the fact that the

error function êk in (2.8) is an accurate approximation to the true squared distance func-

tion from Sk to the target curve C, in terms of the incremental updates D. However, this

method assumes that the target shape is a smooth curve whose tangent and curvature

information can easily be evaluated or estimated accurately, thus it is not applicable to

a target point defined by a point cloud because of the difficulty in computing accurate

tangent and curvature from noisy or sparsely distributed data points.

2.3 Fitting a B-spline Curve to a Point Cloud Using SDM

In this section we introduce a new SD error term for fitting a B-spline curve to a point

cloud. We emphasize that this new SD error term is defined by a quadratic approximation

to the squared distance function of the B-spline fitting curve, rather than that of the fixed

target shape. In other words, we measure the fitting error as defined in Equation. (2.1),

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 12

namely orthogonal to the fitting curve, in contrast to the method in [116] (or see Section

2.2.2) in which errors are measured orthogonal to the fixed target curve and therefore

also a different objective function is minimized.

2.3.1 A new quadratic approximation to the squared distance

Given the current B-spline fitting curve Pc(t) =
∑m

i=1Bi(t)Pc,i, let P+(t) denote the

fitting curve with updated control points P+ = Pc + D, where Pc = {Pc,i} and D are

incremental updates to Pc. Suppose that Pc(tk) is the foot point of the data point Xk

on Pc(t). Let Tk and Nk be the unit tangent vector and the unit normal vector of the

current fitting curve Pc(t) at the foot point Pc(tk), ρ > 0 is the curvature radius of Pc(t)

at Pc(tk) and |d| = ‖Pc(tk) −Xk‖, with the same convention on the sign of d as made

in Section 2.2.2. When the control points P+ change, with the same parameter tk, the

foot point Pc(tk) becomes a variable point P+(tk), and the unit tangent vector T̃k, the

unit normal vector Ñk and curvature radius ρ̃ of the curve P+(t) at the point P+(tk) all

vary with P+.

To obtain a quadratic approximation to the squared distance from Xk to the curve

P+(t), we assume that T̃k, Ñk and ρ̃ are fixed to be Tk, Nk and ρ, i.e., they do not

vary with P+. This assumption implies that, locally at the point Pc(tk), we will only

consider a differential translation of the curve Pc(t) into the curve P+(t). Since this

translation is relative to the data point Xk, we may view, in a relative sense, that P+(t)

is a fixed curve and Xk undergoes a translation. Therefore, we may use the formula (2.6)

to approximate the squared distance from Xk to the curve P+(t), expressed in the global

coordinate system, as

hk(D) =
d

d− ρ [(P+(tk)−Xk)TTk]2 + [(P+(tk)−Xk)TNk]2. (2.9)

Note that hk(D) may take a negative value when 0 < d < ρ. In order to obtain a positive

semi-definite error metric, based on hk(D), we define the new error term as

eSD,k(D) =

{
d
d−ρ [(P+(tk)−Xk)TTk]2 + [(P+(tk)−Xk)TNk]2, if d < 0,

[(P+(tk)−Xk)TNk]
2
, if 0 ≤ d < ρ,

(2.10)

Clearly, eSD,k(D) is a positive semi-definite quadratic function of D in all cases. Since

eSD,k(D) is derived from a direct attempt to accurately approximate the squared distance

function, we will call eSD,k(D) the squared distance error term or SD error term for

short. We stress that, due to the simplifications we have made, eSD,k(D) is, in general,

no longer a second order approximation to the squared distance function, but rather a

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 13

first order approximation that is more accurate than the PD error term or the TD error

term.

When d < 0, the level-set curve of eSD,k(D) = c is an ellipse centered at the point

P+(tk), if the Xk is treated as a variable point. When the control points P+ change,

the ellipse is translated by keeping its center at P+(tk) but with its shape, size and

orientation remaining unchanged (see Figure 2.5). The SD error term eSD,k becomes

the TD error term eTD,k when 0 ≤ d < ρ, i.e., when (i) the data point Xk is sufficiently

near Pc(tk) relative to the magnitude of ρ; and (ii) Xk is on the convex side of the curve

Pc(t), i.e., Xk and the curvature center K are on the same side of the curve Pc(t). The

use of the TD error term here will not cause instability, since in this case the tangent

line is a relatively good approximation to the curve Pc(t) in a neighborhood of Pc(tk).

Iterative minimization of the squared distance using the SD error term (2.10), interleaved

with foot point computation for data parameterization, will be called squared distance

minimization or SDM. Although the tangent and normal vectors Tk and Nk, as well as

ρ, are kept fixed during an iteration, they are updated at the beginning of each iteration

to reflect the continual change of the shape of the fitting curve.

Xk

(a) (b)

Xk

P
D
(tk)

P(tk)

Figure 2.5: The SD error term eSD,k(D) defined by (2.10) is shown via its iso-value
curves in the case of d < 0. (a) Before updating the control points P. (b) The

translation of eSD,k(D) after updating P.

The above derivation of the SD error term is based on a geometric argument. Using

a second order Taylor expansion, we will reveal the relationship between this SD error

term and the Newton iteration later in Section 2.6.3, thus providing another derivation

of the SD error term.

2.3.2 Main steps of SDM

The main steps of the SDM method are as follows.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 14

(1) Specify a proper initial shape of a B-spline fitting curve.

(2) Compute SD error terms for all data points to obtain a local quadratic approxi-

mation fSD of the objective function f , defined by

fSD =
1
2

∑
k

eSD,k + λfs.

(3) Solve a linear system of equations to minimize fSD to obtain an updated B-spline

fitting curve.

(4) Repeat steps 2 and 3 until convergence, i.e., until a pre-specified error threshold

is satisfied or the incremental change of the control points falls below a preset

threshold.

2.4 Experiments and Comparison

In this section we use some test examples to compare SDM with PDM and TDM for

fitting a closed B-spline curve to unorganized data points in the plane. The quadratic

function to be optimized in each iteration has the form

f =
1
2

n∑
k=1

ek + αF1 + βF2, (2.11)

where ek is a particular error term (PD, TD or SD) for the data point Xk, F1 and F2

are energy terms defined as

F1 =
∫
‖P ′(t)‖2dt, F2 =

∫
‖P ′′(t)‖2dt, (2.12)

and α, β ≥ 0 are constants. In our implementation F1 and F2 are integrated explicitly

without numerical approximation.

For a fixed B-spline fitting curve P (t), the Euclidean distance from data point Xk to

P (t) is denoted by dk = ‖P (tk) − Xk‖, where P (tk) is the foot point of Xk on P (t).

Then, for evaluating the approximation error, we define the average error, which is the

root mean square error, as

Error Ave =

[
1
n

n∑
k=1

d2
k

]1/2

,

and the maximum error as

Error Max =
n

max
k=1
{dk}.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 15

(a) Data points on a cir-
cle and an initial B-spline
curve.

(b) The fitting curve gen-
erated by PDM in 10 iter-
ations.

(c) The fitting curve gen-
erated by TDM in 10 iter-
ations.

(d) The fitting curve gen-
erated by SDM in 10 iter-
ations.

0.5 1 1.5 2 2.5

-1

log
10

(Error_Ave)

log
10

(# of iterations)

PDM

TDM

SDM

-1.5

-2

-2.5

-0.5

(e) The average error versus the number of itera-
tions of the three methods.

0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

PDM

TDM

SDM

log
10

(Error_Max)

log
10

(# of iterations)

(f) The maximum error versus the number of iter-
ations of the three methods.

Figure 2.6: (Example 2.1) Comparison of the three methods on a set of 32 sparse
data points on a circle. In this figure log scale (base 10) is used for the iteration axis
in Figures (e) and (f) in order to distinguish the error curves of TDM and SDM. (Note
that the sudden increase in SDM is due to the rapid change of the distribution of control

points.

We present below the results of applying the three methods — PDM, TDM and SDM

— to fitting a cubic B-spline curve with uniform knots to several sets of unorganized

data points. The same values of energy coefficients α = 0 and β = 0.001 are used for all

the examples in this section, unless specified otherwise.

Example 2.1. Non-uniform data points on a circle. (See Figure 2.6.) TDM and SDM

converge with roughly the same speed, and both converge much faster than PDM does,

as shown in Figures 2.6(e) and (f). PDM takes about 100 iterations to reach the same

small error values produced by SDM in fewer than 10 iterations.

Example 2.2. (See Figure 2.7.) For this set of data points, SDM again converges

much faster than PDM does, while TDM is trapped in a local minimum, producing

a curve with self-intersection. To visualize the evolution of an iterative optimization

process (PDM or SDM), we place the fitting curves generated in successive iterations

at successive heights to form an evolution surface (see Figure 2.8). Data points or a

subset of them are displayed at the top of an evolution surface. A striped texture is

used to depict the trajectories of points of fixed parameter values on the fitting curve.

The trajectories of evolving control points are shown by white curves in space. Log

scale (base 10) is used for the height axis in these figures to accommodate for the large

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 16

(a) Unorganized data
points on a “C” shape
and an initial B-spline
curve.

(b) The fitting curve gen-
erated by PDM in 20 iter-
ations.

(c) The fitting curve gen-
erated by TDM in 20 iter-
ations.

(d) The fitting curve gen-
erated by SDM in 20 iter-
ations.

100 200 300 400 500

-1.8

-1.6

-1.4

-1.2

-1

-0.8

log
10

(Error_Ave)

of iterations

PDM

TDM

SDM

(e) The average error versus the number of itera-
tions of the three methods.

100 200 300 400 500

-1.6

-1.4

-1.2

-0.8

-0.6

-0.4

log
10

(Error_Max)

of iterations

PDM

TDM

SDM

(f) The maximum error versus the number of iter-
ations of the three methods.

Figure 2.7: (Example 2.2) Comparison of the three methods on a set of 102 data
points. SDM converges faster than PDM does. TDM is trapped in a local minimum

with self-intersection in the fitting curve.

number of iterations needed by PDM. For size reference, a base square of size 2.2× 2.2

is shown along with these evolution surfaces.

The evolution surfaces generated by PDM and SDM (Figure 2.8), viewed from two

different directions, show that PDM experiences a slow convergence process, while SDM

converges quickly with conspicuous tangent flow of the control points in the first 10

iterations.

Example 2.3. (See Figure 2.9.) This set of data points is extremely noisy. After 50

iterations, SDM has already produced an acceptable result, while PDM converges slowly

and TDM becomes unstable. Here strong tangential flow of control points is observed

in SDM to move some control points at the bottom of the initial curve to the top in (d).

Example 2.4. (See Figure 2.10.) The difficulty with this test lies in the corner points

of the target shape and the highly non-uniform distribution of the control points of the

initial B-spline curve. After 20 iterations, PDM gets trapped in an unacceptable local

minimum and TDM becomes divergent, while SDM converges successfully. Again SDM

exhibits strong tangential flow responsible for re-distributing control points initially

clustered at one side on the initial curve over the target shape to well approximate the

four corner points.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 17

(a) PDM (b) SDM

(c) PDM (d) SDM

Figure 2.8: The evolution surfaces of PDM and SDM for the data in Example 2.2
(Figure 2.7) — viewed from two different angles. (a) The evolution surface of PDM;
(b) The evolution surface of SDM with the same view angle as in (a); (c) The evolution
surface of PDM from another view angle; (d) The evolution surface of SDM with the

same view angle as in (c).

The four examples above are from numerous examples with which we have experimented.

The following observations can be made from our experiments.

1) PDM exhibits the slowest convergence among the three methods, and is often

trapped at a poor local minimum. Our experiments confirm the theoretical conclu-

sion that PDM has, in general, only linear convergence. This is further explained

in Section 2.6.

2) TDM demonstrates fast convergence when the target shape is not so noisy (i.e.,

representing a small-residue problem) and the initial fitting curve is relatively near

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 18

(a) A closed target shape
and an initial B-spline
curve.

(b) The fitting curve gen-
erated by PDM in 50 iter-
ations.

(c) The fitting curve gen-
erated by TDM in 50 iter-
ations.

(d) The fitting curve gen-
erated by SDM in 50 iter-
ations.

Figure 2.9: (Example 2.3) Comparison of the three methods for fitting an extremely
noisy data set of 1, 630 points. After 50 iterations, SDM generates a satisfactory fitting
curve (d), but TDM becomes unstable (c), and PDM is still improving at a slow rate
(b); PDM needs about 400 iterations to produce a fitting curve similar to the one by

SDM shown in (d).

(a) A square-shaped tar-
get shape and an initial B-
spline curve.

(b) The fitting curve gen-
erated by PDM in 20 iter-
ations.

(c) The fitting curve gen-
erated by TDM in 20 iter-
ations.

(d) The fitting curve gen-
erated by SDM in 20 iter-
ations.

Figure 2.10: (Example 2.4) Comparison of the three methods for approximating a
square-shaped target shape consisting of 33 data points. PDM is trapped in a poor local
minimum (b), TDM eventually becomes divergent (c), and SDM converges successfully

in 20 iterations.

the target shape (i.e., |d| ≤ ρ), but often becomes unstable or even develops self-

intersection in a high curvature region of the target shape or if the initial fitting

curve is relatively far from the target shape. Increasing the value of the energy

coefficient β in (2.11) usually improve the stability of TDM, as well as the fairness

of the fitting curve, but often at the expense of a larger fitting error.

3) SDM exhibits much faster convergence than PDM does. The convergence of SDM

is about as fast as that of TDM; moreover, SDM is more stable than TDM, since

TDM often does not converge for target shapes with shape features. This is mainly

due to the fact that TDM is a Gauss-Newton method without step size control.

We will discuss this in more detail in Section 2.6.

4) The iso-value curves of the SD error term are ellipses aligned with the tangent

at a point of the fitting curve. Therefore, at a low-curvature region of a B-spline

fitting curve, the control points of the fitting curve, as well as points on the fitting

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 19

curve, can flow in the tangential direction to attain a better distribution without

causing much penalty from the SD error term. Meanwhile, as desired, such a flow

is dampened at a high-curvature region due to the role played by the curvature

radius ρ and distance d in the SD error term. In contrast, tangential flow of

control points is inhibited by the PD error term, causing stagnant improvement.

Meanwhile, this tangential flow is checked nowhere by the TD error term, since

the TD error term ignores curvature variation on the fitting curve, thus leading to

unstable convergence in the presence of corner points in the target shape.

The ease of implementation and per-iteration computation time of SDM are nearly the

same as those of PDM and TDM, since the three methods share the same framework

but use different quadratic error terms. The per-iteration computation time of SDM is

mainly determined by the number of data points. The dominant part of computation

time is the computation of the foot points of all data points in each iteration. For

example, for the set of 1,630 data points used in Example 2.3, computation of each

iteration takes about 0.15 seconds on a PC with Pentium IV 2.4GHz CPU and 256 MB

RAM, with over 95% of this time spent on foot point computation.

2.5 Implementation Issues

In this section we discuss the following implementation issues for facilitating the conver-

gence or improving the computational efficiency of SDM: 1) initialization and adjust-

ment of control points; 2) fast setup of error terms; and 3) adapting SDM to fit an open

B-spline curve to data points.

2.5.1 Initialization and adjustment of control points

All the three methods we have discussed so far, PDM, TDM and SDM, are local min-

imization schemes; that is to say, their convergence depends on the initial value, i.e.,

the initial fitting curve. We would like to point out several possibilities of specification

of the initial fitting curve, though this is not a focus of this chapter. The first obvious

option is to let the user specify an initial B-spline fitting curve that is sufficiently close

to the target shape and has an appropriate number of control points.

For a target shape defined by a set of dense points, an alternative is to compute a

quadtree partition of the data points and then extract a sequence of points approximating

the target shape from non-empty cells, i.e., those cells containing at least one data point.

These extracted points can then be used as the control points of an initial B-spline fitting

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 20

curve. Our experience shows that this method tends to produce too many control points

at the beginning, so control point deletion is normally required during the fitting process

in order to obtain a fitting curve with a minimal number of control points while still

meeting a prescribed error threshold.

Another approach under our current investigation is based the active contour model. In

this method, a simple initial fitting curve is specified either automatically or by the user.

Then some external energy/force is used in combination with SDM to drive the fitting

curve to converge to a complex target shape in a manner that ensures global convergence.

The key issues here are (i) proper design of the external force so that features and

concavities of the target shape can be captured; and (ii) progressive insertion of control

points at appropriate locations and stages so as to provide increasing shape flexibility to

cope with the complexity of the target shape. We refer to [158] for discussions on control

point insertion and deletion in the context of a local B-spline curve fitting procedure.

2.5.2 Fast setup of error terms

Efficient computation of foot points on the fitting curve of data points is important,

especially when they are a large number of data points, since an error term needs to be

computed for each data point in every iteration. We use the following speedup method

consisting of two phases: preprocessing and query. In preprocessing we first compute

a uniform spatial partition of the data points with a proper cell size and record those

nonempty cells. Next we sample a sufficient number of points on the fitting curve and

compute the normal lines of the fitting curve at these sample points. Then we record

the intersections between these normal lines and all the non-empty cells.

In the query phase, for each data point Xk, we find its containing cell and the two normal

lines such that Xk is between the two lines and they are closest to Xk (see Figure 2.11).

Let the two normal lines be associated with parameter values t̄1 and t̄2 of the fitting

curve. Let d1 and d2 denote the distances from Xk to the two lines. Then, supposing

that the current fitting curve is sufficiently close to the target shape, a good estimate

P (t̃k) of the foot-point of Xk is given by linear interpolation t̃k = (d2t̄1 +d1t̄2)/(d1 +d2).

The point P (t̃k) is then used as an initial point in a Newton-like iterative procedure to

find the foot point P (tk) of Xk.

Figure 2.13 shows an example of using SDM and PDM to fit a B-spline curve to the

contour of a Chinese character Tian, meaning sky. In this example, the procedures

described in Section 2.5.1 are used for initial fitting curve specification and control point

insertion. Again we see that, to achieve the same level of fitting quality, PDM needs

about the same number of control points but much more iterations than SDM does.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 21

TDM without step size control fails to converge for this example, because the font

outline has a number of high curvature feature points.

P(tk)

P(t2)

P(t1)

Xk

d1

d2

Figure 2.11: Foot-point computation
on a fitting curve.

P(t)

X0

θ T0

P0

Figure 2.12: Deriving an error term
for an outer data point X.

2.5.3 Fitting an open B-spline curve

SDM can also be used to fit an open curve to a point cloud that represents an open target

curve, with some necessary modifications to ensure that the endpoints of the fitting curve

are properly determined. We assume that the target curve is not self-intersecting and

that a proper initial shape of an open fitting curve is provided. The data points near

an end of the target curve are called target endpoints. There are two cases to consider:

Case 1: some data points cannot be projected to inner points of the fitting curve; such

points are called outer data points with respect to the fitting curve under consideration.

Case 2: all data points can be projected to inner points of the fitting curve.

In the first case, the error term associated with an outer data point is derived by blending

the SD error term and the PD error term. Specifically, referring to Figure 2.12, let T0

be the unit tangent vector of the fitting curve P (t) at its endpoint P0. Let X0 be an

outer point such that P0 is the closest point from the curve P (t) to X0. Let θ denote

the angle between the tangent line of the curve P (t) at P0 and the vector X0−P0, with

|θ| < π/2 (since X0 is an outer point). Then the error term eouter,0 to be used for X0 is

given by the following interpolation of the PD error term and SD error term,

eouter,0 = cos θ ePD,0 + (1− cos θ)eSD,0. (2.13)

Here P0 is regarded as a function of the control points.

The rationale behind the interpolation in (2.13) is to use the PD error term partially for

outer data points so that, through iterative optimization, the endpoint P0 of the fitting

curve is pulled towards the target endpoints; of course, the SD error terms are still used

for all other non-outer points. Note that the outer points in a target shape are identified

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 22

(a) A Chinese character, tian. (b) The contour of the character (2,656
points).

(c) 42 control points of an initial B-spline
curve.

(d) The initial B-spline curve.

(e) Control points generated by SDM. (f) The B-spline fitting curve from (e).

(g) Control points generated by PDM. (h) The B-spline fitting curve from (g).

Figure 2.13: SDM and PDM are applied to fitting a B-spline curve to the contour
of a Chinese character in (a). The initial fitting curve in (d) has the control points
in (c) that are extracted from a quad-tree partition of the contour data points in (b).
The coefficient of the smoothing term is λ = 0.005. SDM produces the fitting curve in
(f) with the 59 control points shown in (e) after 54 iterations and PDM produces the

fitting curve in (h) with the 60 control points in (g) after 352 iterations.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 23

(a) An open target shape
and an initial open B-
spline curve with 8 control
points.

(b) The fitting curve gen-
erated by PDM in 20 iter-
ations.

(c) The fitting curve gen-
erated by TDM in 20 iter-
ations.

(d) The fitting curve gen-
erated by SDM in 20 iter-
ations.

Figure 2.14: Comparison of the three methods for fitting an open curve to a set of
472 data points. PDM needs about 600 iterations to reach the small approximation

error of SDM as shown in (c).

relative to the current fitting curve; therefore we may have different data points as outer

points in every iteration.

In the second case where none of the data points is an outer point, we just use the

standard SDM method — that is, use the SDM error term for each data point, to make

the fitting curve to contract to fit the target shape. If there are some control points which

are not constrained, we sample some points on those B-spline segments determined by

them and find the corresponding nearest data points, add PDM error term into the

objective function. A non-zero but small value of α for the energy term F1 in (2.12)

may be used to speed up the speed of contraction.

We are going to present two examples of fitting open B-spline curves to data points,

using the technique described above, in combination with SDM and PDM. The first

example is shown in Figure 2.14. We note that, in this example, PDM takes about

600 iterations to reach the same approximation error that is achieved by SDM in 20

iterations. This is again due to the strong tangential flow of B-spline control points that

is accommodated by the SDM error term. We note that TDM works effectively for this

example as well.

The second example, shown in Figure 2.15, is an application to reconstructing a revolu-

tion surface from a point cloud scanned in by a laser range scanner, following a method

proposed in [115]. The basic idea is as follows. First, the rotation axis of the revolution

surface is estimated from the data points. Then this axis is used to rotate the input data

points in 3D (Figure 2.15(a)) into data points lying on a 2D plane (Figure 2.15(b)), from

which the B-spline profile curve is reconstructed using SDM. Then this profile curve is

used to generate a revolution surface (Figure 2.15(c)) approximating the input 3D data

points.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 24

(a) (b) (c)

Figure 2.15: Reconstruction of a revolution surface from a point cloud using a B-
spline profile curve computed by SDM. (a) A revolution surface represented by a set of
5,077 points sampled from an original scan data of 423,697 points; (b) The thick planar
point cloud is fitted with a uniform cubic B-spline curve computed by SDM; (c) The

reconstructed revolution surface.

2.6 Discussion from Viewpoint of Optimization

In this section we discuss SDM, as well as PDM and TDM, for B-spline curve approx-

imation from the viewpoint of optimization. The B-spline curve fitting problem, as

formulated in (2.1), can also be seen as the nonlinear optimization problem of minimiz-

ing

f =
1
2

n∑
k=1

||P (tk)−Xk||2 + λfs, (2.14)

where P (tk) is a normal foot point of Xk, i.e.,

(P (tk)−Xk)TP ′t(tk) = 0, k = 1, 2, . . . , n. (2.15)

We note that, treating P = {Pi} and T = {tk} as two separable groups of variables and

Equation. (2.15) as constraints, this curve fitting problem is an instance of a separable

and constrained nonlinear least squares problem for which the variable projection method

using Gauss-Newton iteration often provides an efficient algorithm [14]. This viewpoint

will be helpful below in the computation of gradient and Hessian of the objective function

f . For simplicity of discussion, in the following we will ignore the regularization term

fs; our conclusion is still applicable with fs being taken into consideration, since fs

is independent of the tk and quadratic in the Pi, assuming that λ is a fixed constant

throughout all iterations.

In the rest of this section we will first explain why PDM has linear convergence, by

viewing it as an alternating method. We will then investigate the standard algorithms

for nonlinear least squares problems, namely Gauss-Newton iteration and the Levenberg-

Marquart method [74], in connection with TDM. We will show that the Gauss-Newton

method based on variable projection [14] is exactly the same as TDM, which is used

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 25

in [15]. From this we conclude on scenarios where TDM works well: a good initial

position of the fitting curve and a small residual problem (i.e., data points are close to

the final fitting curve); for a zero residual problem, optimization theory tells us that this

method exhibits even quadratic convergence. The Levenberg-Marquart method is seen

as a regularized version of TDM.

Our SDM scheme is finer than these standard methods (i.e., gradient descent and Gauss-

Newton) for curve fitting as a nonlinear least squares problem. Although SDM is not

a full Newton method because we do not use the complete Hessian, it comes close to

it; in SDM we approximate the complete Hessian by a quadratic approximation to the

squared distance to a fitting curve in a manner that makes SDM adaptable to local

curvature variation.

In fact, all the methods above can be seen as gradient descent schemes in some appro-

priate metric. Whereas SDM chooses carefully the metric and TDM does this at least

close to the target shape, PDM uses a metric which is not well adapted at all. Finally,

we mention step size control [74] as a means of global convergence improvement of the

three methods.

2.6.1 PDM as an alternating method

We now explain why PDM is a variant of the steepest descent method, and therefore

has a linear convergence rate. Given a planar B-spline fitting curve P (t) with control

points Pi and data points Xk, PDM minimizes the error function f(P, T) defined by

(2.14), which is a function in the Euclidean space R2m+n spanned by P and T , where

P = {Pi}mi=1 are the control points of the fitting curve and T = {tk}nk=1 are the parameter

values associated the data points Xk.

PDM has the following two steps that are carried out in each iteration (see Figure 2.16):

(1) For fixed parameter values T0 = {tk,0} and current control points P0 = {Pi,0}, find

new control points P1 = {Pi,1} by minimization of the quadratic function f(P, T0); (2)

Considering the control points P1 produced in step 1 as fixed, find new parameter values

T1 = {tk,1} by minimization of the error function f(P1, T); this is done by computing the

foot points P (tk) of the data points Xk on the fitting curve P (t) with the control points

P1. Thus, PDM minimizes the objective function in two subspaces parallel to P and

T , respectively, leading to a zigzag path near a local minimum as shown in Figure 2.16,

which is reminiscent of the crawling behavior of the gradient descent method.

Due to the separate and alternate minimization of the P and T variables in each it-

eration, PDM is an alternating method, which is a typical optimization technique for

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 26

solving a separable nonlinear least squares problem and is known to have only linear

convergence [14].

2.6.2 TDM – Gauss-Newton iteration and its variants

First we will derive an expression of the gradient of the objective function in (2.14),

which can also be regarded as a function of the m control points P = (P1, P2, . . . , Pm),

i.e., a function f : R2m → R; the dependence of T on P is built through the constraints

in (2.15). For a fixed k, to indicate the dependence of tk on P, we write tk = t(P),

omitting the subscript for simplicity. Denote F = P (tk)−Xk and fk = ‖F‖. Then the

constraints (2.15) can be re-written, for each k, as

FTt F = 0. (2.16)

Here and in the sequel we will denote partial derivatives with a subscript, e.g., F t :=

∂F/∂t, F tt := ∂2F/∂t2.

We first compute the gradients of f2
k and fk. Since f2

k = FTF , by (2.16), we have

∇f2
k = ∇(FTF) = 2

(
FTP +∇tFTt

)
F = 2FTPF . (2.17)

Here, ∇t is the gradient of tk with respect to P, and FP is the matrix representing the

partial derivative of F with respect to P, not taking into account the dependency of tk
on P. Since ∇f2

k = 2fk∇fk, we obtain

∇fk = FTP
F
fk

= FTP
F
||F|| = −FTPNk, (2.18)

where Nk = −F/||F|| is a unit normal vector of the curve P (t) at P (tk). Then the

gradient of f is found to be

∇f =
1
2

∑
k

∇f2
k =

(
n∑
k=1

B1(tk)(P (tk)−Xk), . . . ,
n∑
k=1

Bm(tk)(P (tk)−Xk)

)T
.

Each component of the above gradient vector, i.e.,

(∇f)i =
n∑
k=1

Bi(tk)(P (tk)−Xk),

stands for a 2D vector associated with the i-th control point Pi, which is a weighted sum

of the error vectors P (tk) −Xk, where the weights are given by the i-th basis function

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 27

Bi, evaluated at the parameter tk of the foot point; of course, only those error vectors

in the support of Bi have influence.

At some places, it will be convenient to represent the B-spline curve in matrix form,

P (t) = B(t)P, (2.19)

where B(t) is the 2×2m matrix (B1(t)I2, . . . , Bm(t)I2) with I2 being the 2×2 identity

matrix. Then the gradient vector ∇f ∈ R2m can be written as

∇f =
n∑
k=1

BT (tk)(P (tk)−Xk) =
n∑
k=1

BT (tk)B(tk)P −
n∑
k=1

BT (tk)Xk. (2.20)

Now let us consider the Gauss-Newton method. A Newton method minimizes the second-

order approximant of the objective function at the current position xc to obtain the next

iterate x+. To find this quadratic approximant for a nonlinear least squares problem

with f = 1
2

∑
k f

2
k , one needs to compute the Hessian of f , which is

∇2f =
n∑
k=1

∇fk · (∇fk)T +
n∑
k=1

fk∇2fk. (2.21)

Since the computation of ∇2fk is usually too costly, the Gauss-Newton method uses only

the first part in (2.21) to approximate the Hessian ∇2f . This amounts to computing

the minimizer x+ of the linear least squares problem

min
1
2

∑
k

[fk(xc) +∇(fk(xc))T · (x− xc)]2.

That is, a linear approximation of fk is used in the Gauss-Newton method.

In the B-spline curve fitting problem, the update step x+−xc is given by the displacement

vectors D = (D1, . . . , Dm) of the m control points. From Equation. (2.18) and Equation.

(2.19), since F = P (tk)−Xk, we have

∇fk = −FTPNk = −BT (tk)Nk.

Therefore the Gauss-Newton iteration for B-spline curve fitting performs iterative min-

imization of

fGN =
1
2

∑
k

[fk −
∑
i

Bi(tk)DT
i Nk]2,

which is interleaved with the step of foot point computation in order to satisfy the con-

straints (2.15). Since Nk = (Xk−P (tk))/‖P (tk)−Xk‖, we have fk = (Xk−P (tk))TNk.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 28

Noting that P (tk) =
∑

iBi(tk)Pi, we obtain

fGN =
1
2

∑
k

[(Xk − P (tk))TNk −
∑
i

Bi(tk)DT
i Nk]2

=
1
2

∑
k

[(Xk −
∑
i

Bi(tk)(Pi +Di))TNk]2

=
1
2

∑
k

[(Xk − P+(tk))TNk]2 =
1
2

∑
k

eTD,k, (2.22)

where eTD,k is defined in Equation. (2.4). Hence, the minimization of the TD error

function in (2.5) in TDM is equivalent to Gauss-Newton iteration.

The TD error term eTD,k, unlike the SDM error term, counts for neither the distance

from the data point Xk to the curve P (t) nor the curvature of the curve P (t), reflecting

the fact that the Gauss-Newton method omits the term fk∇2fk in (2.21).

Strictly speaking, TDM is not the standard Gauss-Newton method, since there is a

step of foot point computation interleaved with Gauss-Newton iteration. In TDM the

Gauss-Newton step is applied in the tangent plane to the constraint surface defined by

the constraints (2.16). Such an algorithm is called a variable projection method using

a Gauss-Newton method for solving a separable and constrained nonlinear least squares

problem and can be shown [14, 124] to have the same asymptotic convergence behavior

as the full Gauss-Newton method applied to all variables (i.e., P and T in our case).

TDM also shares the same framework of the so called generalized reduced gradient (GRG)

method [87] for solving a nonlinear constraint problem with two separable groups of

variables; the steepest gradient direction is used in the tangent plane of the constraint

surface in the GRG method, while a Gauss-Newton step in used in TDM.

It is well known [74] that, in a Gauss-Newton method, if xc is sufficiently close to the

minimizer x∗ of f , the distance ‖ec‖ = ‖xc − x∗‖ of the current iterate to x∗ is related

to the error ‖e+‖ in the next iterate by

‖e+‖ ≤ K(‖ec‖2 + ‖R(x∗)‖ ‖ec‖), (2.23)

where R(x∗) = (f1, . . . , fn)(x∗) is the residual at x∗, and K is a constant which involves

the Jacobian of R(x). It follows from (2.23) that for a zero residual problem Gauss-

Newton iteration converges quadratically and the data points can be fitted exactly.

Furthermore, Gauss-Newton iteration has fast convergence for good initial data and a

small residual problem. For a large residual problem, the Gauss-Newton iteration may

not converge at all.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 29

Some variants of the Gauss-Newton method are possible. If only a scalar multiple of the

Gauss-Newton step, s(x+− xc), usually with 0 < s < 1, is used for stepping to the next

solution, then one obtains the damped Gauss-Newton method [74].

Another way to modify Gauss-Newton is a regularization with the Levenberg-Marquart

method [74], in which a scalar multiple of the identity matrix is added to the approximate

Hessian. In our setting, this method requires the minimization of

fLM =
1
2

∑
k

[(Xk − P+(tk))TNk]2 + νc
∑
i

||Di||2.

Thus, the regularization term penalizes large changes Di in the control points. It can be

shown that using a regularization parameter νc of the order of the norm of the residual,

i.e., O(‖R(xc)‖), one obtains still quadratic convergence for a zero residual problem. A

drawback of the Levenberg-Marquart method in the setting of curve fitting is that the

same magnitude of regularization is applied to every control point, without taking into

account the curvature variation at different locations.

By writing the fitting error as a function of the parameter values tk, the Levenberg-

Marquart method is used in [125] to iteratively update the tk, and faster convergence

of this method than a variant of PDM is reported. However, although the foot point

computation is avoided, it is noted in [125] that this variant of the L-M method is about

10 times slower than PDM per iteration.

A global Gauss-Newton method is implemented in [138] to update the control points Pi
and the parameter values tk together, therefore avoiding the costly step of computing

foot points of data points. However, a relatively large linear system of equations needs

to be solved, since now the parameter values of a large number of data points also enter

optimization.

2.6.3 SDM – a quasi-Newton method

In this section we will derive the expression of the Newton method and then reveal the

difference between our SDM scheme and the Newton method to show that SDM is, in

fact, a quasi-Newton method. The key to this analysis is deriving a suitable expression

of the Hessian of the objective function.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 30

For a fixed k, consider the term f2
k = FTF . Denote F = (Fx,Fy)T . By (2.17), we have

∇f2
k = 2FTPF . The derivative of ∇f2

k yields the Hessian

1
2
∇2f2

k = FTPFP + (FTPF t + FTPtF)∇tT +

∇t(FTt FP + FTFPt) + (FTttF + FTt F t)∇t∇tT

+FxFxPP + FyF yPP
= FTPFP + (FTPF t + FTPtF)∇tT +

∇t(FTt FP + FTFPt) + (FTttF + FTt F t)∇t∇tT (2.24)

Here we used the fact that FxPP = 0,F yPP = 0, since F is linear in P.

Again, ∇t stands for the gradient of tk = t(P) with respect to P.

On the other hand, we need to find the relationship between ∇t and FP . Differentiating

the constraint (2.16), we obtain

(
FTPt +∇tFTtt

)
F +

(
FTP +∇tFTt

)
F t = 0. (2.25)

Solving for ∇t yields

∇t = −F
T
PtF + FTPF t
FTttF + FTt F t

.

Substituting this expression of ∇t in (2.24), we obtain the complete Hessian

1
2
∇2f2

k = FTPFP −
(FTPtF + FTPF t)(FTt FP + FTFPt)

FTttF + FTt F t
.

We will now make a simplification by neglecting the term FTPtF , i.e., setting it to zero.

This results in an approximate Hessian ∇̃2f2
k . To interpret this approximate Hessian

geometrically, we introduce the arc length parameter s of the B-spline curve P (t). Then

we have

1
2
∇̃2f2

k = FTPFP −
FTPF tFTt FP
FTttF + FTt F t

= FTPFP −
(s t)2FTPF sFTs FP

[FTss(s t)2 + FTs s tt]F + FTs F s(s t)2

= FTPFP −
(s t)2FTPF sFTs FP

FTssF(s t)2 + FTs F s(s t)2
= FTPFP −

FTPF sFTs FP
(FTssF + FTs F s)

.

In the above, the term FTs Fs tt drops out due to the constraint (2.16) and the fact that

FTs and FTt are collinear.

Clearly, FTs F s = 1, since F s = Tk is the unit tangent vector of P (t). Since F ss is the

curvature vector of P (t) at P (tk), we have FTssF = −dκ, where κ ≥ 0 is the curvature

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 31

and d is the signed distance defined in Section 2.3. Hence, we obtain

1
2
∇̃2f2

k = FTPFP −
FTPTkT Tk FP
−dκ+ 1

. (2.26)

Noting that TkT Tk +NkN
T
k = I, this equation is further rewritten as

1
2
∇̃2f2

k = FTP
(
I − TkT Tk

)
FP −

dκFTPTkT Tk FP
−dκ+ 1

= FTPNkN
T
k FP +

d

d− ρF
T
PTkT

T
k FP . (2.27)

Now we consider the relationship between SDM and the quasi-Newton method obtained

above by replacing the Hessian ∇2f2
k by ∇̃2f2

k . Note that

FTPNkN
T
k FP = ∇fk(∇fk)T ,

which is the first term in (2.21) that is used by Gauss-Newton iteration to approximate

the true Hessian. Thus, replacing the Hessian ∇2f2
k by ∇̃2f2

k in the Newton method is

equivalent to adding the second term in (2.27) to the Gauss-Newton method to yield

a quasi-Newton method. Recall that the Gauss-Newton method is the same as TDM.

Therefore, noting that (P (tk)−Xk)TTk = 0 (by (2.15)), the above quasi-Newton method

minimizes the quadratic function

fQN = fGN +
1
2

n∑
k=1

D
(

dk
dk − ρk

FTPTkT Tk FP
)
DT

= fGN +
1
2

n∑
k=1

dk
dk − ρk

[(
∑
i

Bi(tk)Di)TTk]2

=
1
2

n∑
k=1

{
[(P+(tk)−Xk)TNk]2 +

dk
dk − ρk

[(P+(tk)− P (tk))TTk]2
}

=
1
2

n∑
k=1

{
[(P+(tk)−Xk)TNk]2 +

dk
dk − ρk

[(P+(tk)−Xk)TTk]2
}

=
1
2

n∑
k=1

hk(D),

where hk(D) is defined in (2.9) and dk, ρk are the corresponding distance and curvature

radius for the k-th term. Hence, the quasi-Newton method uses a local quadratic model

fQN that is the same as the quadratic approximant hk(D) used by the SD error term

before it is turned into the semi-definite form in (2.10). Hence, we have shown that

the SDM method is a quasi-Newton method obtained by discarding the term FTFPt,
which amounts to disregarding the change FPt of the tangent vector P ′t(tk) caused by

the change of the control points.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 32

SDM does not fall into the category of the quasi-Newton methods that fulfill the so-

called secant equation [74]. Instead, SDM uses another positive definite approximant of

the Hessian, based on geometric considerations. Although SDM is not a standard opti-

mization procedure, it is a computationally attractive and effective compromise between

a full Newton scheme and Gauss-Newton – it picks up more contributions of the true

Hessian than the Gauss-Newton iteration (or TDM) does, but ignores the remaining part

for reasons of computational efficiency and simplicity. Indeed, SDM is an optimization

scheme that is particularly suited for solving shape fitting problems, because it uses an

intuitively simple error metric that is adaptable to local curvature variation of a target

shape.

Each term f2
k in the objective function in (2.14) is the squared distance function. Because

the exact Hessian in the second order Taylor expansion of f2
k is modified in order to

derive the SD error term, we conclude that, in general, the SD error term is not a

second order approximation to the squared distance, even without the modification in

(2.10) to make the error term positive semi-definite. This is in contrast to the previous

squared distance minimization method by Pottmann et al. [116] where the quadratic

approximant in (2.6) is always a second order approximation to the squared distance

function, before the modification to turn it into the positive semi-definite error term in

(2.7).

2.6.4 Step size control

We have tested step size control on PDM, TDM, and SDM, using the Armijo rule [74].

It is found that step size control does not help much with PDM and SDM — PDM

still converges slowly, and the per-iteration computation of SDM becomes much longer

with moderate degree of improvement in stability. It is found that the stability of TDM

improves greatly with the help of step size control, however, at the cost of much longer

per–iteration time, especially when approaching a local minimum, since, due to the

“flat” gradient near a local minimum, it normally gets more time-consuming to select

an appropriate step size via repetitive evaluations of the fitting error.

Figure 2.17 shows the result of applying step size control (the Armijo rule) to TDM on

the same data points and initial B-spline curves as shown in Figures 2.7(a) and 2.10(a);

now both data sets are satisfactorily approximated by B-spline curves computed with

TDM. For comparison, refer to Figures 2.7(c) and 2.10(c) to see the unacceptable fitting

curves generated by TDM without step size control.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 33

P

T

(P0, T0)

Hessian

Figure 2.16: The alternating minimization steps of PDM near a local minimum.
P and T stand for the linear subspaces spanned by the control points and the data

parameters, respectively.

(a) (b)

Figure 2.17: TDM using the Armijo rule for step size control. (a) The fitting curve
by TDM in 20 iterations for the data set in Figure 2.7(a); (b) The fitting curve by TDM

in 20 iterations for the data set in Figure 2.10(a).

2.7 Concluding Remarks

PDM is widely used in practice for parametric curve and surface fitting [52]. As we

have shown, PDM has linear convergence in theory, converges slowly in practice, and is

often trapped in a poor local minimum. TDM is a method often used for curve fitting

in computer vision (e.g., [15]). TDM converges faster than PDM, but its convergence is

highly unstable. Against this backdrop, we have proposed a novel and efficient method,

called SDM, for fitting B-spline curves to point cloud data. We have shown empirically

that SDM converges faster than PDM and that SDM is more stable than TDM. In

addition, SDM is easy to implement and has similar per-iteration computation time to

PDM and TDM, since they share the same framework. All this suggests that SDM is a

favorable alternative to PDM or TDM for B-spline curve fitting.

Chapter 2. Fitting B-spline Curves to Point Clouds by SDM 34

In order to gain a better understanding of the above geometrically motivated schemes,

we have studied the B-spline curve fitting problem from the optimization viewpoint.

We note that PDM is a gradient descent method in a metric that is not well chosen.

We have also shown that TDM uses a Gauss-Newton step for solving a nonlinear least

squares problem, and its instability at high curvature regions is thus due to its omission

of important parts in the true Hessian of the objective function and the lack of step

size control. Finally, we have shown that our proposed SDM scheme is a quasi-Newton

method using a carefully chosen approximate Hessian, and thus its superior performance

in both convergence and stability does not come as a surprise. Interestingly, unlike most

other quasi-Newton methods, the approximate Hessian used by SDM is not explicitly

computed; it arises naturally as the consequence of using the simple SDM error term

devised out of entirely geometric considerations, i.e., making use of curvature information

to give a close approximation of the squared distance function. This contributes to

the simplicity and efficiency of SDM. One of direct applications is subdivision surface

fitting [31], which shows the superiority and effectiveness of SDM.

Claim: the presented material in this chapter has been published in [151].

Chapter 3

Constrained 3D Shape

Reconstruction Using a

Combination of Surface Fitting

and Registration

3.1 Introduction

The motivation for the present research comes from reconstruction of objects from 3D

scanner data, where special kinematic surfaces (cones, cylinders, general surfaces of

revolution, helical surfaces) appear frequently. Many reconstruction algorithms for the

more general representatives of these surface classes require estimated surface normals

[115, 146]. Although these methods are quite efficient when good normal estimates

are available, they lack the desired precision if it is difficult to obtain accurate normal

estimation or the deviation of the data from the ideal shape model is relatively large; an

example is the reconstruction of vessels from archeological findings. Moreover, in these

methods the computation of the sweeping motion is separated from the computation of

the swept profile, which is a further source of errors.

In this chapter, we extend recent work on improved reconstruction of surfaces of revo-

lution [155] with a more generally applicable concept arising from the geometric opti-

mization framework of squared distance minimization (SDM)(cf. Chapter 2). Our new

method combines the two types of optimization problems that have been solved so far

with SDM, namely curve/surface fitting and registration. This new approach is not only

35

Chapter 3. Constrained 3D Shape Reconstruction 36

applicable to surfaces of revolution but also to other classes of surfaces and to a number

of surface reconstruction problems in reverse engineering in the presence of constraints.

3.1.1 Previous work

Since the focus of the present work is on constrained 3D shape reconstruction, we only

review research in this direction. A constraint may fix the surface type: there have been a

considerable number of contributions to fitting with special surfaces and thus we refer to

[146] for a detailed survey. Existing methods are mainly taken from geometry (Gaussian

image, line geometry and kinematical geometry), image processing (methods in extension

of the Hough transform) and optimization (non-linear least squares problems). They

are also used for surface type recognition (shape filters).

Fitting data with a surface of a given type that is determined with appropriate shape

filters, while maintaining constraints between the individual elements of the surface,

is a challenging problem [146]. Not only do we need to check the consistency of the

constraints, we also need to fit the data simultaneously under these constraints. The

work of Benkö et al. [11], Fisher [53], and Karniel et al. [73] can be considered to

constitute the state of the art in this area. In the actual fitting part of the problem,

most authors use a least squares formulation which embeds the constraints via penalty

terms.

Our research is based on a combination of registration and fitting, and in this sense

closely related to the work on knowledge based image segmentation via a combination

of registration and active contours [96, 103, 147] and to deformable models introduced

by Terzopoulos and Fleischer [141]. We also present a new solution for the simultaneous

treatment of multiple view registration and model fitting, which extends prior work by

Jin et al. [71] and Tubic et al. [143].

3.1.2 Contributions

Our contributions are:

• the extension of the SDM method to surface approximation with error measure-

ment orthogonal to the fitting surface;

• the combination of registration and surface fitting within the SDM framework;

• refined algorithms for fitting with kinematic surfaces (rotational, helical and spiral

surfaces) plus a demonstration of their efficiency for shape reconstruction from

measurement data of archeological pottery, shells and engineering objects;

Chapter 3. Constrained 3D Shape Reconstruction 37

• a new way of incorporating constraints into 3D surface reconstruction for applica-

tions in reverse engineering of CAD models;

• an efficient optimization algorithm which combines multiple view registration and

model fitting and in this way achieves higher accuracy than the traditional ap-

proach which first registers the data and then fits a model to it.

3.2 Fundamentals of SDM

Here we summarize a few basic facts about squared distance minimization (SDM). For

more details and issues of efficient implementation we refer to [6, 112, 117, 158] and

Chapter 2. Before entering this discussion we would like to point out that many authors

have used the distance field [38, 78] for registration and fitting; in fact, the concept of the

distance field is so closely tied to the problem that it must occur in some way. However,

most papers do not use the distance function in the same way as we are doing it: we use

local quadratic approximants of the squared distance function and in this way obtain

fast local convergence via algorithms of the Newton or quasi-Newton type.

3.2.1 Squared distance function of a surface

Given a surface Φ ⊂ R3, the squared distance function d2 assigns to each point x ∈ R3 the

square of its shortest distance to Φ. The importance of this function for our algorithms

lies in the fact that we want to compute a surface which minimizes the sum of squared

distances to the data point cloud. Since several important optimization concepts require

second order approximants of the objective function, we need to derive second order

approximants of d2.

Let us fix the notation. We consider a surface Φ with unit normal vector field n(s) =

n3(s), attached to points s ∈ Φ. At each point s, we have a local Cartesian frame

(n1, n2, n), where the first two vectors n1, n2 determine the principal curvature direc-

tions. We will refer to this local frame as the principal frame Π(s). Let κj be the (signed)

principal curvature in the principal curvature direction nj , j = 1, 2, and let ρj = 1/κj .

Let s ∈ Φ be the normal foot point of a point p ∈ R3, i.e., s is the closest point on Φ

to p. Expressed in the principal frame at s the second order Taylor approximant Fd of

the function d2 at a point x ∈ R3 in a neighborhood of p is

Fd(x) =
d

d− ρ1
[n1 · (x− s)]2 +

d

d− ρ2
[n2 · (x− s)]2 + [n3 · (x− s)]2. (3.1)

Chapter 3. Constrained 3D Shape Reconstruction 38

Here, [nj · (x − s)]2, j = 1, 2, 3, are the squared distances of x to the principal planes

and tangent plane at s, respectively.

In the important special case of d = 0 (i.e., p = s), the approximant Fd equals the

squared distance function to the tangent plane of Φ at s. Thus, if p is close to Φ,

the squared distance function to the tangent plane at p’s closest point on Φ is a good

approximant of d2.

In a Newton-like iteration it is important to employ nonnegative quadratic approximants;

we obtain them by removing from the expression of Fd(x) in (3.1) those terms with a

negative coefficient d/(d− ρj).

3.2.2 Registration using SDM

A set of points X0 = (x0
1,x

0
2, . . .) ⊂ R3 is given in some coordinate system Σ0. It

will be rigidly moved (i.e., registered) to be in best alignment with a given surface Φ,

represented in another system Σ. We view Σ0 and Σ as a moving system and a fixed

system, respectively. A position of X0 in Σ is denoted by X = (x1,x2, . . .). It is the

image of X0 under some rigid body motion Υ. Since we identify positions with motions

and the motions have to act on the same initial position, we write X = Υ(X0), or

xi = Υ(x0
i).

The registration problem is formulated in a least squares sense [13, 30]: Compute a rigid

body transformation Υ∗, which minimizes the sum of squared distances of Υ(x0
i) to Φ,

F (Υ) =
∑
i

d2(Υ(x0
i),Φ). (3.2)

Starting from an appropriate initial position Υ0, SDM performs a Newton-like iteration

to minimize F [117]. We describe here a single iteration of the algorithm: Since F is

the sum of squared distances of the data points xi to the model shape Φ, a quadratic

approximant is

G =
∑
i

Fd,i, (3.3)

where the Fd,i are the second order approximants of the squared distance functions of

xi to the model shape. These approximants have been described in Section 3.2.1. Then,

by equation (3.1), a second order Taylor approximant of the squared distance function

at xi is written in the form

Fd,i(x) =
3∑
j=1

αi,j [ni,j · (x− si)]2, (3.4)

Chapter 3. Constrained 3D Shape Reconstruction 39

where ni,j · (x− si) = 0, j = 1, 2, 3, denote the coordinate planes of the principal frame

at the foot point si ∈ Φ of the point x0
i , and the αi.j can readily be read from equation

(3.1). The same form holds for a nonnegative modification, i.e., terms with negative

coefficients will be discarded. One now approximates the displacement of the data point

xi up to the first order by,

x′i = x0
i + c + c× x0

i , (3.5)

where c = (c̄1, c̄2, c̄3) and c = (c1, c2, c3) represent the translational and rotational

components of a velocity field.

Plugging x′i into G in equation (3.3) gives a local quadratic model of the objective

function,

F2(c, c) =
∑
i

3∑
j=1

αi,j [ni,j · (x0
i + c + c× x0

i − si)]2.

Since ni,j · (x0
i − si) is the distance of x0

i to the j-th coordinate plane of the principal

frame, it vanishes for j = 1, 2; and it equals the oriented distance di of x0
i to the model

surface Φ for j = 3. Therefore we may rewrite F2 as

F2(c, c) =
∑
i

2∑
j=1

αi,j [ni,j · (c + c× x0
i)]

2 + F̃2(c, c). (3.6)

Here, F̃2 denotes the part arising from the squared distances to the tangent planes at

the foot points, given by

F̃2(c, c) =
∑
i

[ni · (c + c× x0
i) + di]2, (3.7)

where ni = ni,3. Since F2 is a quadratic function in (c, c), the unique minimizer (c′, c′)

can be given explicitly by solving a system of linear equations.

Remark 3.1. In the above application of SDM we measure the squared distance errors

from the moving points xi orthogonal to the fixed model surface Φ. The moving points

xi are functions of the motion parameters (c, c) to be optimized.

So far we have estimated the displacement of the data point cloud with help of the

velocity field (c, c). We now apply an appropriate helical motion which is determined

by this velocity field: The Plücker coordinates (g, g) of the axis, the rotational angle φ

and the pitch p of the helical motion (including special cases) are given by

p = (c · c)/(c)2, φ = ‖c‖, (g, g) = (c, c− pc). (3.8)

Recall that the Plücker coordinates of a line G consist of a direction vector g and the

moment vector g = p× g, where p represents an arbitrary point on G. Altogether, the

Chapter 3. Constrained 3D Shape Reconstruction 40

desired motion is the superposition of a rotation about some axis A through an angle of

φ = ‖c‖ and a translation parallel to A by the distance of p ·φ. For the explicit formulae

we refer to the literature [115].

3.2.3 SDM for B-spline surface fitting

In this subsection, we describe the basic idea of B-spline curve fitting according to

Chapter 2. Different from the SDM introduced in Section 3.2.1 and 3.2.2 (ref. Remark

3.1), this method measures the fitting error orthogonal to a moving fitting surface. But,

since the fitting error is also given by a quadratic approximation of the squared distance

to the fitting surface, we shall also refer to the method as squared distance minimization,

or SDM. Although the method has been presented in Chapter 2 for B-spline curves

only, its generalization to fitting a B-spline surface to a point cloud (x1, . . . ,xN) is

straightforward and outlined below.

The main steps are as follows.

(1) Specify a proper initial shape of a B-spline fitting surface.

(2) Compute squared-distance error terms for all data points to obtain a local quadratic

model of the objective function.

(3) Solve a linear system of equations to optimize the local quadratic model to obtain

an updated spline surface.

(4) Repeat steps 2 and 3 until convergence, e.g., until a pre-specified error threshold

is satisfied or the incremental change of the control points falls below a preset

threshold.

We explain below briefly steps 2 and 3.

Step 2. An error term is associated with each data point xi. The error term to be

used in the next iteration is found as follows. Compute a (nonnegative) second order

approximant of the squared distance function from xi to the current instance of the

fitting surface Φ; see equation (3.4). Let si = sc(ui, vi) be the closest point on the

fitting surface to xi. Then the error term for xi is

Ei,c =
3∑
j=1

αi,j [ni,j · (xi − sc(ui, vi))]2. (3.9)

When we update the surface Φ to s+(u, v) with the new control points, the surface point

s+(ui, vi) given by the same parameters (ui, vi) is, in general, no longer the foot point

Chapter 3. Constrained 3D Shape Reconstruction 41

of xi; moreover, the normal vectors ni,j and curvature radii ρi,j will have changed there.

However, when the model surface is updated by a small change of the control points, we

still use equation (3.9) to estimate the new fitting error at xi, by

Ei,+(D) =
3∑
j=1

αi,j [ni,j · (xi − s+(ui, vi))]2, (3.10)

where the variables are the control points D := (d1, . . . , dm) of the B-spline fitting

surface, in the expressions of the updated surface points s+(ui, vi); we use Ei,+(D) to

emphasize the dependence of the error term on the control points D. It has been shown

in Chapter 2 that this simplification yields a quasi-Newton method for optimization,

which is not of a standard type (such as BFGS [74]), but provides a very good trade-off

between computational simplicity and fast convergence.

Step 3. We use a B-spline surface, whose representation of the form s(u, v) =
∑

k Bk(u, v)dk
is linear in the control points. Substituting this form for s+(ui, vi) in the objective func-

tion yields

F (D) =
N∑
i=1

Ei,+(D) + Fs(D)

= Fs(D) +
N∑
i=1

3∑
j=1

αi,j [ni,j · (xi −
∑
k

Bk(ui, vi)dk)]2. (3.11)

Here, Fs is a smoothing term, assumed to be quadratic in D. The part coming from the

sum of squared distances is also quadratic in the unknown control points D. Therefore

the minimization of F requires only the solution of a linear system.

3.2.4 TDM and PDM

When setting αi,1 = αi,2 = 0 and αi,3 = 1 in Equation. (3.4) (or Equation. (3.10)), we

obtain the tangent distance minimization or TDM, since Fd,i(x) = [ni(x − si)]2 which

measures the squared distance from x to the tangent plane at si.

When αi,1 = αi,2 = αi,3 = 1 in Equation. (3.4) (or Equation. (3.10)), we obtain

Fd,i(x) = ‖x − si‖2, which measures the distance between the two points x and si;

hence, the resulting minimization scheme is called the point distance minimization or

PDM. A detailed discussion of these two minimization methods and their comparison

with SDM can be found in Chapter 2.

SDM is simplified to the TDM method if we approximate the function d2 at a point xi
by the squared distance to the tangent plane at the foot point yi. For registration, a

Chapter 3. Constrained 3D Shape Reconstruction 42

method similar to TDM has been first proposed by Chen and Medioni [30] and is known

to be superior to the standard ICP [13]. For B-spline curve fitting, the TDM method has

been described by Blake and Isard [15]. It is known [117, 151] that TDM corresponds

to a Gauss-Newton iteration. Thus, it exhibits quadratic convergence for a zero residual

problem and a good initial position. However, this is not a practical assumption and

thus one should enhance its stability by applying step-size control, e.g., using the Armijo

rule or the Levenberg-Marquardt (L-M) regularization [74].

The standard ICP algorithm [13] approximates d2 at xi by the squared distance to the

foot point si, i.e., the error term for xi is defined in PDM as ||xi − s+(ui, vi)||2 (ref.

Equation. (3.10)). This PDM method is frequently used for freeform surface fitting [146],

exhibits only linear convergence and is prone to be trapped in a poor local minimizer;

see, e.g., [151].

3.3 Combination of Surface Fitting and Registration

Before entering the general discussion, let us explain the main idea with the following

example: We want to fit a surface of revolution to a set of data points.

The standard solution to this problem uses estimated surface normals at the data points

and line geometry to compute the rotational axis [115]. The axis is then kept fixed and

an appropriate generatrix is computed to obtain the final surface. This method works

very well for finding a good initial guess of the axis, but has the disadvantage that the

error in the axis estimate, which arises from the normal estimates, cannot be further

reduced in the subsequent computation of the generatrix. We present here the following

idea.

After an initial guess of the axis A has been found, use a coordinate system in which

A is a coordinate axis, say the x3-axis. A surface of revolution with this axis takes a

very simple form. Then, we use SDM optimization to simultaneously update the fitting

surface (i.e., control points of its generatrix) and move the set of data points (as a single

rigid body system) until the fitting error is minimized. This is carried out by combining

the techniques in Section 3.2.2. and Section 3.2.3. Moving the data point cloud is a

registration process and equivalent to changing the axis. However, we register the data

point cloud to a changing surface rather than a fixed one.

More specifically, let us explain the registration of a point cloud to a changing surface

s. In each iteration, for each data point x0
i , we compute its closest point si,c ≡ sc(ui, vi)

Chapter 3. Constrained 3D Shape Reconstruction 43

on the current instance of the fitting surface Φ : s(u, v), and set up the SD error term,

Ei,c =
3∑
j=1

αi,j [ni,j · (xi − si,c)]2.

The error after a small displacement of the data point set and a change of the surface

is estimated as follows. We use a linearization for the displacement of the data point

set, i.e., xi will be approximated by x′ = x0
i + c + c × x0

i ; the change of the control

points updates the model surface to s+(u, v); and therefore the surface points si,c will

be replaced by si,+ ≡ s+(ui, vi). Then, the new error term, as an approximation to the

squared distance from xi and Φ, is

Ei,+ =
3∑
j=1

αi,j [ni,j · (x0
i + c + c× x0

i − si,+)]2, (3.12)

where the variables are the motion parameters (c, c) and the control points D. A sum

of these error terms, together with a quadratic fairness term Fs,

F =
N∑
i=1

3∑
j=1

αi,j [ni,j · (x0
i + c + c× x0

i − si,+)]2 + Fs(D), (3.13)

gives rise to the minimization of a quadratic function in each iteration. Since the surface

points si,+ depend linearly on the unknown shape parameters, i.e., control points, F is

quadratic in those unknowns as well as (c, c), assuming that Fs is also a quadratic

function of D. Of course, the data point cloud is updated with an appropriate helical

motion as for pure registration. We note that this method is applicable even when

shape parameters are not linear variables, such as the weights in a rational B-spline

surface – one just needs to apply a linearization (see Section 3.4.2), like using (c, c) to

approximate a rigid motion.

Due to misalignment, multiple view registration for a 3D object usually introduces errors

not present in the measurement data. These errors would affect the subsequent surface

fitting errors, thus the precision of the final reconstructed CAD model of the 3D object.

Within the present setting, we may use an initially registered point cloud for the initial

steps in the constrained fitting procedure. In later steps, however, we can allow a

different motion for each of the K scans that have been used. In this way we hope to

remove inaccuracies resulting from the initial registration (see [71, 143]). Given K point

clouds Xk = {x0
k,i, i = 1, . . . , Nk}, k = 1, . . . ,K, which represent the individual scans

Chapter 3. Constrained 3D Shape Reconstruction 44

(views), our SDM objective function is reformulated as

F =
K∑
k=1

wk

Nk∑
i=1

3∑
j=1

αk,i,j [nk,i,j · (x0
k,i + ck + ck × x0

k,i − sk,i,+)]2 + Fs(D), (3.14)

where wk is a weight for the points in each scan (in practice, we can choose wk = 1/Nk);

αk,i,j and nk,i,j have the same meaning as in (3.13); (ck, ck) is the velocity field of Xk.

We will show some examples in Section 3.4.3.2.

The new version of the SDM method — a combination of fitting and registration — is

as simple as the previously discussed cases of pure surface fitting or registration. Its

performance from the viewpoint of optimization is comparable to that of pure fitting.

As in Chapter 2, TDM with step size control also has good performance.

3.4 Applications

In this section we present three applications of our combined framework of registration

and fitting to: 1) surface reconstruction from archeological pottery; 2) shell shape model

verification; and 3) constrained CAD model reconstruction in reverse engineering. In

all these applications we need to fit a surface of a special type to a given set of 3D

scanned data points. For the convergence analysis we use the average error defined by

the following root mean squared error :

Ave Error =

√√√√ 1
N

N∑
i=1

‖xi − si,c‖2 (3.15)

The data set is first normalized by uniform scaling to fit in the unit box [0, 1]3, to make

the optimization parameters independent of model dimensions.

3.4.1 Surfaces of revolution

In order to fit a surface of revolution to a set of data points, we use the well-known line

geometric method to compute an initial guess [115]. The axis is then used as x3-axis

of the coordinate system. For the generatrix we take a B-spline curve, (r(u), z(u)) =∑
k(rk, zk)Bk(u) with control points pk = (rk, zk). Then the surface is

x(u, v) =
∑
k

(rk cos v, rk sin v, zk)Bk(u) + (0, 0, pv).

Chapter 3. Constrained 3D Shape Reconstruction 45

Iterations

0 5 10 15 20 25 30

Lo
g

10
(A

ve
_E

rr
or

)

-2.5

-2.4

-2.3

-2.2

-2.1

-2.0

-1.9

-1.8
 PDM
 TDM
 SDM

Figure 3.1: Approximation of an archeological finding by a rotational surface: (top
left) original model; (top right) surface reconstructed with SDM method; (bottom left)
average errors versus the number of iterations. Note that SDM and TDM are nearly
the same, and both better than PDM; (bottom right) data points rotated into a profile
plane. From left to right: initial guess and results after optimization with PDM, TDM

and SDM. (# of points: 2,260)

Here p is the pitch of the helical surface; we have p = 0 for a surface of revolution. The

essential parameters pk = (rk, zk) and p appear linearly, and therefore the SDM method

from Section 3.3 can be applied. For pure surface fitting, according to Section 3.2.3, the

parameters (ui, vi) of the closest point si,c = sc(ui, vi) to xi are kept unchanged when

we move to si,+ = s+(ui, vi).

The registration part does not require the full motion group. We exclude translations

parallel to the x3–axis by setting c = (c1, c2, 0). Moreover, rotations about the x3–axis

are excluded by setting c = (c1, c2, 0). This is done for both surfaces of revolution and

helical surfaces. In the latter case, eventually, necessary translations in axis direction or

rotations about the axis can be handled via a translation of the profile curve parallel to

the axis.

Figure 3.1 shows an example of 2,260 data points of a scanned pot. The profile curve

is a cubic B-spline curve with 7 control points and uniform knots. The significant

Chapter 3. Constrained 3D Shape Reconstruction 46

Iterations

0 5 10 15 20 25 30

Lo
g

10
(A

ve
_E

rr
or

)

-2.48

-2.46

-2.44

-2.42

-2.40

-2.38

-2.36

-2.34

-2.32

-2.30
PDM
TDM
SDM

Figure 3.2: Approximation of a broken archeological finding by a rotational surface:
(top left) original model; (top right) surface reconstructed with SDM method; (bottom)
average errors versus the number of iterations. SDM and TDM are nearly the same,

and both better than PDM. (# of points: 2,863)

improvement of the rotation axis is illustrated by the data points rotated into the profile

plane: after optimization this cloud is much thinner than the one obtained in the initial

fit via line geometry. The results of using SDM, TDM, and PDM are shown. Here and

for the examples below, the stability of SDM is enhanced by applying a regularization

similar to the L-M method, a trust-region based regularization conventionally applied

to the Gauss-Newton method. It is observed that for this example SDM and TDM have

nearly the same convergence behavior, while PDM is much slower(Figure. 3.2).

3.4.2 Spiral surfaces

A spiral surface is generated by a curve undergoing a spiral motion (one-parameter

subgroup of similarities in R3), which is the composition of a rotation about a spiral

axis A and an exponential scaling from the so-called spiral center C ∈ A. Placing C at

the origin and setting A to be the x3-axis, a spiral surface with a B-spline profile can be

Chapter 3. Constrained 3D Shape Reconstruction 47

represented as

x(u, v) = epv
∑
k

[rk cos v, rk sin v, zk]Bk(u). (3.16)

Spiral surfaces are frequently taken as models for shapes of shells [94]. We would like to

test the precision of this mathematical model using our new optimization method. Very

recently, we devised a method which is in some sense analogous to the line geometric

approach and can estimate the spiral axis and center from a set of data points and

estimated normals, under the assumption that the data points are close to some spiral

surfaces [63]. Using this method to provide an initial fit, we now present an improved

spiral fitting algorithm based on SDM.

Iterations

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Lo
g

10
(A

ve
_E

rr
or

)

-2.2

-2.1

-2.0

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4
SDM
PDM
TDM

Figure 3.3: Shell helix pomata: (top left) data points of a shell; (top right) initial
fit; (bottom left) average error v.s. the number of iterations. Note that SDM performs
better than PDM and TDM; (bottom right) fit computed by SDM. (# of points: 13666)

Chapter 3. Constrained 3D Shape Reconstruction 48

We note that x(u, v) (3.16) is no longer linear in the unknowns p (spiral parameter) and

pk = (rk, zk). Hence, we use the following first order Taylor approximant at the current

values pc and pk,c of the unknowns,

x(u, v) = epcv
∑
k

[rk cos v, rk sin v, zk]Bk(u) +

+v(p− pc)epcv
∑
k

[rk,c cos v, rk,c sin v, zk,c]Bk(u).

Keeping the parameter values (ui, vi) of the foot points si,c, we arrive at new points si,+,

which depend linearly on the unknown parameters. Therefore, SDM from Section 3.3

works again.

Figure 3.3 shows that an initial fit can be improved significantly by our optimization

algorithm, although for this example the residual fitting error is still rather large. For

this example, we see that PDM and TDM do not converge as fast as SDM. Since the

optimized fit is not ideal, we are inclined to conclude that the spiral surface is not an

accurate model for this type of shell.

3.4.3 Constrained 3D shape reconstruction

3.4.3.1 Constrained fitting to a single set of data points

In the applications described above, it is an advantage to represent a fitting surface in an

adapted coordinate system Σ; for example, we put the rotational axis into a coordinate

axis or the spiral center into the origin. Choosing an adapted coordinate system may

also be possible for a typical engineering object: important elements such as rotational

axes, planar faces, etc. can be brought into a special position with respect to Σ. Using an

adapted coordinate system, we can set up a parametric model (see Figures 3.4,3.8,3.10).

Varying the parameters gives a family of models all of which satisfy the constraints.

Thus, our viewpoint leads to an unconstrained optimization problem for the parameters

of the model.

Identifying such a coordinate system Σ for building the parametric model is made fea-

sible either with some prior knowledge about the model or by user interaction. Within

the general SDM procedure described in Section 3.3, we now adapt the model shape

parameters (if necessary, using linearization as in Section 3.4.2) and update the position

of the data set using a rigid motion with respect to the model shape.

We use an example to illustrate these steps. Figure 3.4 shows 33,981 measured data

points of a machine part, and the parametric CAD model of the part and three side

Chapter 3. Constrained 3D Shape Reconstruction 49

views, with constraints and model parameters indicated. Figure 3.5 shows the initial fit,

final fit and error curves. The constraints of the model are preserved strictly and only

the values of the model parameters are updated in each iteration. Here and later for the

examples in Section 3.4.3, only the TDM method is used, since many faces of the CAD

model are planar, i.e., having zero curvature, thus making SDM reduce to TDM at these

planar locations. The variations of all the model parameters are shown in Figure 3.6.

For evaluation, using the same data and CAD model in Figure 3.4, we compare our

combined approach with an approach that optimizes position and surface shape alterna-

tively [71]; (the latter is therefore called the alternating method). TDM is used in both

position and shape updates in the alternating method. One position update and its suc-

cessive surface shape update are counted as one iteration of the alternating method. The

two error curves are shown in Figure 3.5 (bottom right), from which it is clear that the

combined approach is more efficient. A theoretical explanation is that in the alternating

method the iteration follows a zig-zag path in the subspace of motion parameters and

the subspace of shape parameters, thus the resulting only in linear convergence in the

alternating method. On the other hand, the combined method using TDM behaves sim-

ilarly to the Gauss-Newton method, and therefore can have near quadratic convergence

for small-residual problems.

3.4.3.2 Constrained fitting to multiple views

In this section we provide an experimental validation of our conjecture that relaxing the

initial registration by allowing different motions for the individual scans can reduce the

overall error. As seen from Figures 3.7,3.8 and 3.9,3.10, the combination of fitting with

multiple-view registration leads to higher accuracy than first performing the registration

on the point cloud data and then fitting a model to the registered data. We consider it

an important feature of our algorithm that multiple-view registration can so easily be

combined with fitting.

3.4.4 Remarks on the implementation

In this section we provide a few details on the actual implementation.

Closest points. Our algorithm requires to find, for every data point x, its closest point

(foot-point) s on the initial surface. If there are too many points, this step will be very

time consuming. To speed up this step, we sample a number of points on the surface

firstly, then construct a kd-tree structure for finding the nearest point in the set of

sample points. Viewing the nearest sample point as an initial point, we then apply a

Chapter 3. Constrained 3D Shape Reconstruction 50

W1

W1

H5R3

W2

W2

W2

W2W2

W2

R2

R1W1

W1

H5

W2 W2

W2

W2W2

W2

H2

H1

R2

R4

H3

R1

H4

Figure 3.4: (top left): A data set of 33,981 points from a machine part; (top right):
its triangulated surface; (middle left): a parametric model; (middle right): top view;

(bottom left): bottom view; (bottom right): front view.

Chapter 3. Constrained 3D Shape Reconstruction 51

Iterations

0 5 10 15 20 25 30 35 40

Lo
g

10
(A

ve
_E

rr
or

)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0
TDM

Iterations

0 5 10 15 20 25 30 35 40

Lo
g

10
(A

ve
_E

rr
or

)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0
alternating method
TDM

Figure 3.5: (top left): Initial fit; (top right): optimized fit after 6 iterations of TDM;
(bottom left): average error of our method v.s. the number of iterations; (bottom

right): comparison with the alternating method.

Figure 3.6: Variations of the parameters for the machine part model in Figure 3.4.

Chapter 3. Constrained 3D Shape Reconstruction 52

Figure 3.7: left: A data set of 331,150 points from a 3D model using 7 scans; right:
the registered point set

H1

R2

R1
H3

H4

R1
H3

H5

H5

H6

H2

H3

H6

A

B

R1

Iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lo
g

10
(A

ve
_E

rr
or

)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6 TDM multi-view
TDM single view

Figure 3.8: (top left): front and bottom views of a parametric model; (top right):
initial model and initial fit; (bottom left): optimized fit after 8 iterations of TDM;
(bottom right): average error v.s. the number of iterations, and comparison with the
single view case. We see that combining fitting and multiple-view registration lead to

higher accuracy.

Chapter 3. Constrained 3D Shape Reconstruction 53

Figure 3.9: left: A data set of 107670 points from a CAD model based on 7 scans;
right: the registered point set

R3
R2

R1

H4
60

o

R3

R4

F1

F2

F1,F2 are fillet radiuses

B R2

R1

R3

H1

H2

H3

Iterations

0 5 10 15 20 25 30 35 40 45 50

Lo
g

10
(A

ve
_E

rr
or

)

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6
TDM multi-view
TDM single view

Figure 3.10: Combining fitting and multiple-view registration. (top left): front view
of the parametric model; (top right): side view; (middle left): initial fit; (middle right):
optimized fit after 12 iterations of multiple-views TDM; (bottom) average error v.s. the

number of iterations, and comparison with the single view case.

Chapter 3. Constrained 3D Shape Reconstruction 54

Newton iteration to compute a more precise foot-point on the surface. Of course, if the

surface is very simple, like a plane or cylinder, we can find the closest point directly.

Step size control. In each step we minimize the objective function by solving a linear

system. We use Levenberg-Marquart regularization in order to avoid instabilities and

too large steps [74].

3.5 Conclusions

We have shown that 3D shape fitting in the presence of constraints may be simplified and

made more efficient by combining registration and surface approximation. To achieve

a good convergence behavior, we have implemented this idea within the framework of

SDM. We have also compared SDM with TDM and PDM, and found that SDM and

TDM are more efficient than PDM, and with proper step size control TDM is as good

as SDM in many cases. Moreover, we have shown that relaxing the initial registration in

the final phase of our algorithm is easily formulated within our framework and improves

the fitting accuracy.

Claim: the presented material in this chapter has been published in [84].

Chapter 4

Least Squares Orthogonal

Distance Fitting of Parametric

Curves and Surfaces

4.1 Introduction

Effective and accurate curve/surface fitting plays an important role and serves as a basic

module in CAGD, computer graphics, computer vision and other scientific and engineer-

ing fields. We extend the fitting and registration problem discussed in Chapter 2,3 in a

more general setting, : fit a parametric curve/surface C(P; t) (whose parametric form

is known but the parameter values are to be determined) to a set of given data points

{Xj}nj=1 ⊂ Rs. Here P are the shape parameters and t = (τ1, . . . , τm) are location

parameters (For instance, t of a 3D parametric surface C(u, v) is (u, v)). This problem

is usually stated as a standard nonlinear least squares problem:

min
P,t1,...,tn

n∑
j=1

‖C (P; tj)−Xj‖2 (4.1)

Where tj is associated with the data point Xj .

There exists vast literature about this problem in mathematics, statistics and computer

science. Despite the differences of existing methods in variant contexts, the basics of

most methods are classical optimization theory and optimization techniques such as

decent methods and Gauss-Newton methods [99] appearing in different forms.

First we introduce the traditional way of fitting a parametric curve/surface to a given

data set in CAGD [67, 68, 154]. The first step is the parameterization which associates

55

Chapter 4. Least Squares Orthogonal Distance Fitting 56

the location parameter tj to each data point Xj . After substituting tj into (4.1), the

second step is solving a linear least squares problem if the shape parameters occur in

linear form; for instance, P are the control points of the B-spline curve/surface. By ex-

ecuting these two steps iteratively, improved location parameters and shape parameters

are obtained. This approach has been widely used because of its simplicity. However

its convergence rate is slow and is proven to be linear [14]. On the other hand, without

separating P and t1, . . . , tn, the general optimization techniques of course can be ap-

plied. One can optimize P, t1, . . . , tn simultaneously [61, 138]. Moreover if P are in the

linear form, the separable nonlinear least squares method (variable projection) can be

employed and is better than the simultaneous method [14, 24, 57]. But the size of cor-

responding nonlinear least squares problem becomes larger when n increases. Therefore

these methods are not suitable for fitting a large number of data points. In the metrology

and pattern recognition communities people prefer the least squares orthogonal distance

technique which is an iterative method and considers the relationship between shape

parameters and location parameters. In Chapter 2 a curvature-based squared distance

minimization(SDM) is proposed for orthogonal distance fitting for B-spline curve fitting.

In this chapter we consider general parametric curve/surface fitting problems, which are

not limited in 2D, 3D curves and surfaces.

Contributions: Inspired by the approaches in [8] and our work in Chapter 2, 3, we

analyze the existing orthogonal distance techniques by rephrasing them into a general

optimization framework. We propose two modified methods CDM and GTDM based

on geometric and optimizational analysis. We reveal that the existing and our proposed

methods have clear geometric meanings. This better understanding will benefit the

general parametric models fitting and registration.

4.2 Preliminary

4.2.1 Notation

Let C(P; t) ⊂ Rs represent a family of parametric curves or surfaces. A set of points

{Xj}nj=1 ⊂ Rs are to be approximated by C(P; t). Here t = (τ1, . . . , τm) ∈ Rm is the

location parameter and P = (p1, . . . , pr) is the shape parameter. For instance, if m = 1,

C(P; t) represents a parametric curve. We assume that C(P; t) has C2 continuity. In

this chapter vectors and matrices are denoted by bold face and vectors are in the column

format. The first-order partial derivatives of C(P; t) are denoted as follows:

∂C(P; t)
∂P

=
[
∂C(P; t)
∂p1

, . . . ,
∂C(P; t)
∂pr

]
,

∂C(P; t)
∂t

=
[
∂C(P; t)
∂τ1

, . . . ,
∂C(P; t)
∂τm

]

Chapter 4. Least Squares Orthogonal Distance Fitting 57

∇Pt =

∂τ1

∂p1
· · · ∂τm

∂p1
...

. . .
...

∂τ1

∂pr
· · · ∂τm

∂pr

 .

In many curves and surfaces fitting applications, the initial positions of data points and

the model are not aligned well. The data points or the model is allowed to be transformed

in the fitting process. By introducing proper transformation, the fitting process can be

accelerated and overcome some local minimum cases. The most common transformation

is rigid transformation[1, 8]. Combined with rigid transformation, we have shown in

Chapter 3 that the convergence speed of the fitting algorithm can be faster and high

accuracy also can be achieved. Although the transformation can be applied to the data

points or the model, for unifying our analysis we assume the transformation is applied

on the parametric model, i.e. the shape parameter P can contain the transformation

parameters if needed.

4.2.2 Nonlinear least squares

We consider a standard nonlinear least squares problem which minimizes the objective

function f(X):

min
X

1
2

n∑
i=1

f2
i (X) , f(X) (4.2)

The residual vector is defined as r(X) = (f1(X), f2(X), . . . , fn(X))T . The first derivative

of f(X) can be expressed in terms of the Jacobian of r: J(X) =

∇f1(X)

...

∇fn(X)

, where

∇fi(X) is the gradient of fi with respect to X. The gradient and Hessian of f(X) have

the following forms

∇f(X) = J(X)T r(X); H = ∇2f(X) = J(X)TJ(X) +
n∑
i=1

fi(X)∇2fi(X)

The Gauss-Newton method approximates the Hessian by J(X)TJ(X). In practice the

line search strategy or the Levenberg-Marquardt method

(
J(X)TJ(X) + λI

)
δX = −J(X)T r(X)

is incorporated with the Gauss-Newton method. The Quasi-Newton type method ap-

proximates the Hessian or the inverse of the Hessian by a positive-definite matrix which

Chapter 4. Least Squares Orthogonal Distance Fitting 58

is updated at each iteration with some specified schemes such as BFGS [99]. But in

this chapter we mainly focus on Gauss-Newton type methods.

4.2.3 Principal directions and curvatures of parametric curves and sur-

faces

For a smooth parametric curve/surface C(t), its first-order derivatives ∂τ1C(tp), . . .,

∂τmC(tp) at point C(tp) span a tangential space>pC. Its orthogonal complement defines

the normal space ⊥pC. For a given unit normal vector np ∈ ⊥pC, we can define the

principal vectors and curvatures with respect to np. The details can be found in Section

2.2 of [148]. Let T1, . . . ,Tm be the principle vectors which span >pC and κ1, . . . , κm

be the corresponding principle curvatures with respect to np. The orthonormal basis of

⊥pC are Nm+1, . . . ,Ns. One identity about the orthonormal basis will be useful in this

chapter:

Is = T1TT
1 + · · ·+ TmTT

m + Nm+1NT
m+1 + · · ·+ NsNT

s . (4.3)

Where Is is a s× s identity matrix.

Remark 4.1. For a 3D parametric curve, the curvature K and curvature direction N0

are well defined from differential geometry. Since in our discussion N is not necessarily

coincident with N0, we have κ = K· < N,N0 >. < ?, ? > is the inner product of two

vectors.

4.3 Orthogonal Distance Fitting

The optimization process of orthogonal distance fitting contains two steps which are

executed repeatedly:

1. Reparameterization: compute the foot-point of Xj on C(P; t), i.e, minimize the

distance from Xj to C:

min
tj

‖C (P; tj)−Xj‖, j = 1, . . . , n (4.4)

2. minimize one of the following objective functions by applying one step of optimiza-

tion techniques such as Gauss-Newton methods:

min
P

∥∥∥(‖C (P; t1(P))−X1‖ , . . . , ‖C (P; tn(P))−Xn‖)T
∥∥∥ (4.5)

Chapter 4. Least Squares Orthogonal Distance Fitting 59

or

min
P

∥∥∥∥(C (P; t1(P))T −XT
1 , . . . ,C (P; tn(P))T −XT

n

)T∥∥∥∥ (4.6)

Since (4.5) minimizes the l2 norm of the residual vector rd:

rd = (‖C (P; t1(P))−X1‖ , . . . , ‖C (P; tn(P))−Xn‖)T , (4.7)

the corresponding method is called Distance-based method; also since (4.6) minimizes

the l2 norm of the residual vector rc:

rc =
(
C (P; t1(P))T −XT

1 , . . . ,C (P; tn(P))T −XT
n

)T
, (4.8)

the corresponding method is called Coordinate-based method. By applying nonlin-

ear least squares optimization technique these two methods produce different results.

Atieg and Watson present their analysis on Distance-based and Coordinate-based Gauss-

Newton approaches in [8]. We will show the geometry behind these two methods and

their variations.

Orthogonality: Because tj is the minimizer of (4.4), the orthogonality condition (4.9)

below always holds in each step, except when the foot-point is at the boundary of C.〈
C (P; tj)−Xj ,

∂C (P; tj)
∂τk

〉
= 0, j = 1, . . . , n; k = 1, . . . ,m (4.9)

The orthogonality condition (4.9) plays an important role in parameterization correc-

tion and optimization. Many effective foot-point computation methods are available in

literature [68, 106, 127]. If the explicit foot-point formula is not available, one can apply

Newton-like optimization methods on (4.9) to obtain the foot-point and corresponding

location parameter. But the initial guess t0 is a key issue in foot-point computation. For

complex parametric curves/surfaces, one good strategy is to build a k-D tree from the

sample points {C(P; tk), k = 1, . . . , L} then find the nearest point for Xj which serves

as the initial foot-point.

4.3.1 Distance-based Gauss-Newton method

Distance-based methods are widely used in metrology. Here the l2 norm of residual vector

rd is to be minimized. Depending on whether considering the association between the

shape parameter P and the local parameter t, Gauss-Newton distance-based methods

can be categorized to two types: the separated method and the standard method.

Chapter 4. Least Squares Orthogonal Distance Fitting 60

(1) Separated distance-based Gauss-Newton method

The residual vector rd in the separated distance-based Gauss-Newton method is defined

as

rd = (‖C (P; t1)−X1‖ , . . . , ‖C (P; tn)−Xn‖)T ,

where each tj is fixed. The first-order total derivative of ‖C (P; tj)−Xj‖ with respect

to P is

∇P ‖C (P; tj)−Xj‖ =
C (P; tj)

T −XT
j

‖C (P; tj)−Xj‖
∂C (P; tj)

∂P
, (4.10)

where it must be assumed that C (P; tj) 6= Xj such that the derivative exists. Numerical

computation can be unstable when C (P; tj) approaches Xj . Notice that if C is a 2D

parametric curve or a 3D parametric surface, the vector
C (P; tj)−Xj

‖C (P; tj)−Xj‖
:= Nj actually

is the unit normal at C(tj) whose sign may be positive or negative. Thus the instability

can be eliminated if we replace it with the unit normal. The Jacobian of rd at C (P; tj)

can be written as

J1 =

NT

1

∂C (P; t1)
∂P
...

NT
n

∂C (P; tn)
∂P

 .

From the normal equation JT1 J1 · δP = −JT1 rd, we can derive that

n∑
j=1

∂C (P; tj)
T

∂P
NjNT

j

∂C (P; tj)
∂P

· δP = −
n∑
j=1

∂C (P; tj)
T

∂P
(C (P; tj)−Xj) , (4.11)

where δP is the increment of the shape parameter P.

Now we show the geometric meaning behind (4.11). the right hand side of (4.11) can be

rewritten as:

∂C (P; tj)
T

∂P
(C (P; tj)−Xj) =

∂C (P; tj)
T

∂P
Nj ·NT

j (C (P; tj)−Xj) (4.12)

Now Equation.(4.11) actually minimizes the squared distance from data points to their

tangent planes at the foot-points:

min
P

n∑
j=1

[
NT
j · (C (P; tj)−Xj)

]2
(4.13)

It is easy to verify the normal equation of Equation.(4.13) is Equation.(4.11) just by

applying the Gauss-Newton method on Equation.(4.13). We call this kind of geometric

minimization TDM (Tangent Distance Minimization)(cf. Chapter 2).

Chapter 4. Least Squares Orthogonal Distance Fitting 61

As we have pointed out, there is no numerical problem for 2D parametric curves and 3D

parametric surfaces if we replace Nj with curves/surfaces’ normals. For high dimension

parametric curves/surfaces (m < s − 1), TDM is not suitable when the data points

are almost contained in a low dimension space Rl, l < s. For instance, fitting a 3D

parametric curve to a set of points in a plane causes the ill-conditioning of Jacobian

matrix [8]. We use a simple example to illustrate this problem. Assume that a 3D curve

has the following parametric form (at2, bt3, c), where a, b, c are shape parameters and

the data points lie in the x-y plane. The third component of Nj will be always zero. It

means that c does not appear in NT
j · (C (P; tj)−Xj). Therefore the normal equations

will be singular.

(2) Standard distance-based Gauss-Newton method

With the consideration of the association between t and P, in the standard distance-

based Gauss-Newton method the residual vector rd is defined as in (4.7). The first-order

total derivative of each element of rd with respect to P is

∇P ‖C (P; tj(P))−Xj‖ =
C (P; tj)

T −XT
j

‖C (P; tj)−Xj‖
∇PC (P; tj(P))

=
C (P; tj)

T −XT
j

‖C (P; tj)−Xj‖

[
∂C (P; tj)

∂P
+
∂C (P; tj)

∂t
∇Ptj

]
= NT

j

∂C (P; tj)
∂P

, (4.14)

where the term
(
C (P; tj(P))T −XT

j

)
· ∂C (P; tj)

∂t
∇Ptj is eliminated due to the or-

thogonality condition. The result (4.14) is the same as (4.10), which means that both

separated and standard distance-based approaches produce the same geometric mini-

mization scheme – TDM.

4.3.2 Coordinate-based Gauss-Newton method

Now we consider the coordinate-based Gauss-Newton method based on the objective

function (4.6), which is widely used in pattern recognition community.

(1) Separated coordinate-based Gauss-Newton method

In the separated coordinate-based Gauss-Newton method the residual vector rc is defined

as

rc =
(
C (P; t1)T −XT

1 , . . . ,C (P; tn)T −XT
n

)T
.

Chapter 4. Least Squares Orthogonal Distance Fitting 62

The first-order total derivative of C (P; tj)
T −XT

j with respect to P is
∂C (P; tj)

T

∂P
. So

the Jacobian J2 of rc is
∂C (P; t1)

∂P
...

∂C (P; tn)
∂P

 .

Still from the normal equation JT2 J2 · δP = −JT2 rc, we obtain

n∑
j=1

∂C (P; tj)
T

∂P
∂C (P; tj)

∂P
· δP = −

n∑
j=1

∂C (P; tj)
T

∂P
(C (P; tj)−Xj) (4.15)

The normal equation actually represents a geometric minimization

min
P

n∑
j=1

[C (P; tj)−Xj]
2 (4.16)

which penalizes the squared distance from data points to foot points, we call this method

PDM (Point Distance Minimization). It is widely used in CAGD community because

of its simplicity. Especially when P is in the linear form in C, one just needs to solve

a linear equation and the ‖rc‖ always decreases. However PDM only exhibits linear

convergence.

(2) Standard coordinate-based Gauss-Newton method

In the standard distance-based Gauss-Newton method the residual vector rc is (4.8),

where tj is associated with P through (4.9). The first-order total derivative of each

element with respect to P is

∇P (C (P; tj(P))−Xj) =
∂C (P; tj)

∂P
+

m∑
k=1

∂C (P; tj)
∂τj,k

∇Pτj,k(P) (4.17)

In general the explicit expression of τj,k(P) with respect to P is not always available. So

we use the implicit procedure presented in [8]. Since the orthogonality condition (4.9)

holds and it is an identity in P, its total derivative with respect to P is still 0. Therefore

Chapter 4. Least Squares Orthogonal Distance Fitting 63

we have

0 = ∇P

〈
C (P; tj)−Xj ,

∂C (P; tj)
∂τj,k

〉
=

〈
∂C (P; tj)

∂P
+

m∑
l=1

∂C (P; tj)
∂τj,l

∇Pτj,l(P),
∂C (P; tj)
∂τj,k

〉
+〈

C (P; tj)−Xj ,
∂2C (P; tj)
∂τj,k∂P

+
m∑
l=1

∂2C (P; tj)
∂τj,k∂τj,l

∇Pτj,l(P)

〉
.

Without loss of generality, suppose C (P; tj) is a local regular parameterization such

that τj,1-, . . ., τj,m- direction vectors are unit principle direction vectors Tj,1, . . . ,Tj,m

with respect to Nj (see Section 4.2.3). The above equation can be simplified as

0 =

〈
∂C (P; tj)

∂P
+

m∑
l=1

Tj,l∇Pτj,l(P),Tj,k

〉
+〈

C (P; tj)−Xj ,
∂2C (P; tj)
∂τj,k∂P

+
∂2C (P; tj)
∂τj,k2

∇Pτj,k(P)
〉

= TT
j,k

∂C (P; tj)
∂P

+
m∑
l=1

TT
j,kTj,l∇Pτj,l(P) + (C (P; tj)−Xj)

T ∂
2C (P; tj)
∂τj,k∂P

+

djNT
j κj,kNj∇Pτj,k(P)

= TT
j,k

∂C (P; tj)
∂P

+ (1 + djκj,k)∇Pτj,k(P) + (C (P; tj)−Xj)
T ∂

2C (P; tj)
∂τj,k∂P

,

where dj = ‖C (P; tj) −Xj‖, κj,k is the principle curvature along Tj,k with respect to

Nj . Then we obtain

∇Pτj,k = −
TT
j,k

∂C (P; tj)
∂P

+ (C (P; tj)−Xj)
T ∂

2C (P; tj)
∂τj,k∂P

1 + djκj,k
(4.18)

We can rewrite (4.17) as

∇P (C (P; tj(P))−Xj) =
∂C (P; tj)

∂P
−

m∑
k=1

Tj,kTT
j,k

∂C (P; tj)
∂P

+ djTj,kNT
j

∂Tj,k

∂P
1 + djκj,k

(4.19)

In the degenerate case when 1+djκj,k ≈ 0, one can modify the denominator to 1+dj |κj,k|
to improve the condition number of the normal equation. We note that this degenerate

case is not addressed in the literature of orthogonal distance fitting, such as [1, 8]. But

it can happen in practice. For example, let a parametric circle be (r cos t, r sin t) and

one data point Xj be near to the origin. We have 1 + djκj,k ≈ 1 + r · −1
r = 0.

(3) Modified standard coordinate-based Gauss-Newton methods

Chapter 4. Least Squares Orthogonal Distance Fitting 64

The computational cost of the second-order derivatives
∂2C (P; tj)

∂t2
and

∂2C (P; tj)
∂P∂t

may be high in some applications. So we shall derive two kinds of modified standard

Gauss-Newton methods with less computation cost and clear geometric meanings.

First we recall the notation in Section 4.2.3. At the point C(tj), Tj,1, . . . ,Tj,m span a

tangent vector space >j,pC and Nj,m+1, . . . ,Nj,s denote the orthonormal basis of >j,pC’s

orthogonal complement space ⊥j,pC. The following identity always holds

I = Tj,1TT
j,1 + · · ·+ Tj,mTT

j,m + Nj,m+1NT
j,m+1 + · · ·+ Nj,sNT

j,s. (4.20)

We will use this identity in our following derivation. By dropping the second-order

derivatives from Equation. 4.19, we will derive two methods.

1. Drop
∂2C (P; tj)
∂P∂t

. This leads to

∇P (C (P; tj(P))−Xj) ≈
∂C (P; tj)

∂P
−

m∑
k=1

Tj,kTT
j,k

∂C (P; tj)
∂P

1 + djκj,k

= I · ∂C (P; tj)
∂P

−
m∑
k=1

Tj,kTT
j,k

∂C (P; tj)
∂P

1 + djκj,k

=

(
m∑
k=1

djκj,kTj,kTT
j,k

1 + djκj,k
+

s∑
k=m+1

Nj,kNT
j,k

)
∂C (P; tj)

∂P

Substituting the above result into the normal equation JTJ · δP = −JT rc, we

obtain

∂C (P; tj)
T

∂P

(
m∑
k=1

(djκj,k)
2 Tj,kTT

j,k

(1 + djκj,k)
2 +

s∑
k=m+1

Nj,kNT
j,k

)
∂C (P; tj)

∂P
δP =

∂C (P; tj)
T

∂P

(
m∑
k=1

djκj,kTj,kTT
j,k

1 + djκj,k
+

s∑
k=m+1

Nj,kNT
j,k

)
(C (P; tj)−Xj) .

The normal equation represents the following geometric minimization

min
P

n∑
j=1

{
m∑
k=1

(djκj,k)
2

(1 + djκj,k)
2

[
TT
j,k · (C (P; tj)−Xj)

]2
+

s∑
k=m+1

[
NT
j,k · (C (P; tj)−Xj)

]2}
(4.21)

We will call it CDM (Curvature Distance Minimization).

Chapter 4. Least Squares Orthogonal Distance Fitting 65

2. Drop
∂2C (P; tj)
∂P∂t

and
∂2C (P; tj)

∂t2
. It is easy to verify in this case that the normal

equation corresponds to the following geometric minimization

min
P

n∑
j=1

{
s∑

k=m+1

[
NT
j,k · (C (P; tj)−Xj)

]2}
(4.22)

Since (4.22) only penalizes the squared distance from data point Xj to the tangent

space Tj,p(C) we call it GTDM (Generalized Tangent Distance Minimization).

This scheme does not suffer from the ill conditioning problem of high dimension

parametric curves/surfaces (m < s− 1) which is mentioned before. Still using the

same example at the end of the last subsection, let one normal be Nj and another

normal be Nz = (0, 0, 1)T . The variable c will appear in NT
z (C (P; tj)−Xj), so

that rank deficiency of the normal equation is avoided.

4.3.3 SDM - modified Hessian approximation

So far our discussion is based on Gauss-Newton methods. Now we look at the Hessian

directly. In Chapter 2 we proposed a curvature based squared distance minimization

method called SDM where the Hessian is modified to be definite-positive. We do not

go into the details and just describe the basic idea here. For each C (P; tj) − Xj , its

second-order derivatives
∂2C (P; tj)

∂P2
and

∂2C (P; tj)
∂P∂t

are dropped. So the modified

Hessian is

H̃ =
n∑
j=1

∂C (P; tj)
T

∂P

[
m∑
k=1

djκj,k
1 + djκj,k

Tj,kTT
j,k +

s∑
k=m+1

Nj,kNT
j,k

]
∂C (P; tj)

∂P
. (4.23)

The corresponding geometric minimization is

min
P

n∑
j=1

{
m∑
k=1

djκj,k
1 + djκj,k

[
TT
j,k · (C (P; tj)−Xj)

]2
+

s∑
k=m+1

[
NT
j,k · (C (P; tj)−Xj)

]2}
.

(4.24)

Remark 4.2. If, besides
∂2C (P; tj)

∂P2
and

∂2C (P; tj)
∂P∂t

, we also drop
∂2C (P; tj)

∂t2
from

the Hessian, SDM will become GTDM. Thus GTDM also is an approximation of the

Hessian.

4.3.4 Comparisons

We summarize the geometric minimization schemes introduced in previous sections in

Table 4.1 and compare them in several aspects.

Chapter 4. Least Squares Orthogonal Distance Fitting 66

Table 4.1: Geometric minimization schemes

Method Geometric terms
PDM [C (P; tj)−Xj]

2

TDM
[
NT
j · (C (P; tj)−Xj)

]2

GTDM
s∑

k=m+1

[
NT
j,k · (C (P; tj)−Xj)

]2

CDM
m∑
k=1

(djκj,k)
2

(1 + djκj,k)
2

[
TT
j,k · (C (P; tj)−Xj)

]2
+

s∑
k=m+1

[
NT
j,k · (C (P; tj)−Xj)

]2

SDM
m∑
k=1

djκj,k
1 + djκj,k

[
TT
j,k · (C (P; tj)−Xj)

]2
+

s∑
k=m+1

[
NT
j,k · (C (P; tj)−Xj)

]2

Computational cost: The standard coordinate-based Gauss-Newton method (or GN

for short) is the most expensive method because of computations of the second-order

derivatives
∂2C (P; tj)

∂t2
and

∂2C (P; tj)
∂P∂t

. Since CDM and SDM have similar expressions,

their computational costs are the same. GTDM only involves computation of
∂C (P; tj)

∂t
for constructing the normal space if m < s−1. TDM and PDM do not need to compute

any derivative of C(P; t) with respect to t. thus they are more efficient than the others

in constructing the approximated Hessian.

Applicability: With proper step-size control or combining Levenberg-Marquardt meth-

ods, most methods are suitable for general parametric curve/surface fitting. Only TDM

may have problems in fitting high dimension parametric curves/surfaces, i.e, when

m < s− 1.

Convergence: Because GN and TDM are standard Gauss-Newton methods, they show

quadratic convergence for zero residual problems, super-linear convergence for small

residual problems and linear convergence in other cases. For our modified methods

CDM and GTDM, they also have the same convergence as TDM. One can see that

when ‖C (P; tj)−Xj‖ approaches zero, the second-order derivatives in Equation. (4.19)

can be ignored so that the Hessian is still well approximated. Unfortunately PDM is

an alternating method which is a typical optimization technique for solving a separable

nonlinear least squares problem and is known to have only linear convergence [14].

Remark 4.3. For high dimension curves/surfaces fitting, i.e. s > 3, the principle curva-

ture computation can be expensive. In this case GTDM is a good candidate under the

consideration of performance and effectiveness. Also when m = s−1, GTDM is reduced

to TDM actually.

Chapter 4. Least Squares Orthogonal Distance Fitting 67

4.4 Numerical Experiments

Now we compare the methods introduced in Section 4.3: PDM, TDM, CDM, GTDM,

GN, SDM. For demonstrating the effectiveness of GTDM, we choose a planar ellipse

in 3D space as our parametric models and a point cloud with different scale noises(For

general comparison in 2D/3D curve and surface fitting, we refer the reader to the ref-

erences [1, 8, 84, 151]). In our implementation the Levenberg-Marquardt method is

integrated.

Example: We consider fitting an ellipse to 200 data points sampled from an ellipse:

(cos 2πi
200 , 2 sin 2πi

200 , 0), i = 0, 1, . . . , 199 in 3D. The parametric ellipse has the following

form which involves rotation and translation
x

y

z

 = Rx ·Ry ·Rz ·

a cos t

b sin t

0

+

cx

cy

cz

Where Rx =

1 0 0

0 cosα − sinα

0 sinα cosα

, Ry =

cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

,

Rz =

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

. The shape parameters are P = [a, b, cx, cy, cz, α, β, γ]. We

choose four cases to illustrate the convergence of each method, with the following initial

values for P

• Case 1: P = [3.1, 1.0, 1.0, 2.0, 0.2, 4.0, 1.0, 6.0];

• Case 2: P = [0.1, 4.0, 2.0, 0.0, 1.0, 1.0,−1.0, 2.0];

• Case 3: same P as in Case 1 but perturb the data points with random noise

distributed uniformly in [−0.001, 0.001];

• Case 4: same P as in Case 1 but perturb the data points with random noise

distributed uniformly in [−0.1, 0.1]. (See Figure. 4.1)

Figure.4.2 shows that the average error versus the number of iterations of the six meth-

ods. The average error is defined as
√∑n

j=1 ‖C(P;tj)−Xj‖2
n . From the figure we find the

surprising fact that GTDM is much better than the other methods. It converges very

fast and only needs several iterations. The behaviors of TDM in the four cases are

different. In Case 2 and 3 TDM is easy to be trapped in the local minimum. In Case 4,

Chapter 4. Least Squares Orthogonal Distance Fitting 68

since the data points are not nearly planar, TDM shows good performance. In all the

cases GN is a little better than CDM but is still slower than GTDM and SDM.

From our experience in 2D/3D curves and surfaces fitting, actually there is no strong

evidence and theoretical guarantee that shows which method (TDM, CDM, GTDM, GN,

SDM) is best for most fitting problems since the integrated step-control strategy like

line search or the Levenberg-Marquardt method affects the behavior and unexpected

local minimum may stop the optimization. Also for large residual problems all the

methods exhibit linear convergence which is similar to PDM. For instance, see Case

4 of the example. But in general GTDM is as good as the others at least in most

cases. By considering the computational cost and overall performance, we strongly

recommend GTDM for general parametric curve and surface fitting including parametric

sub-manifold fitting (i.e, when m < s − 1) due to its clear geometric meaning and its

simplicity since it does not need to compute the principle curvatures and directions.

4.5 Conclusions

A systematic geometrical and optimizational analysis on least squares orthogonal dis-

tance fitting of parametric curves and surfaces is presented. We give the geometric

characterization of existing techniques and propose two modified versions based on ge-

ometric meanings. We show how principle curvature and directions are embedded in

optimization methods. The presented geometric understanding of optimization tech-

niques will benefit efficient and effective curve/surface fitting. Also for further research,

it is interesting to study the geometry behind methods for implicit curve/surface fitting.

Claim: the presented material in this chapter has been published in [85].

Chapter 4. Least Squares Orthogonal Distance Fitting 69

Y

Z

X

Figure 4.1: The initial ellipse and data points of Case 4.

Figure 4.2: Comparisons of the six methods on a set of 200 data points. Upper left:
Case 1; upper right: Case 2; lower left: Case 3; lower right: Case 4.

Chapter 5

Computing Centroidal Voronoi

Tessellation with Superlinear

Convergence

5.1 Introduction

5.1.1 Problem setting and previous work

Lloyd’s optimal quantizer :

Lloyd’s relaxation (invented in 1957, published later [86]) is an algorithm that computes

the optimal sampling of a signal (e.g. optimal colormap of an image, optimal placement

of cellphone antennas etc. . .). It is also used to optimize the locations of vertices in

mesh generation algorithms [48]. Given a domain Ω ⊂ RN , Lloyd’s algorithm computes

an optimal sampling of Ω (also called an optimal quantizer) by minimizing a certain

energy F (also called quantization noise power), defined over the cells of the Voronoi

tessellation of the samples :

F (X) =
n∑
i=1

fi(X) =
n∑
i=1

∫
Ωi

ρ(z)‖z − xi‖2dz, (5.1)

where xi = (xi, yi, zi, . . .) ∈ RN denotes a sample (also called a seed), Ωi = V or(i) ∩ Ω

denotes the intersection between the Voronoi cell of sample i and the domain Ω, and

ρ(·) is a ”background density” function.

71

Chapter 5 Computing Centroidal Voronoi Tessellation 72

The vector X ∈ RnN gathers all the coordinates

at all the samples (for N = 3, X = (x1, y1, z1,

. . . , xn, yn, zn)). In a certain sense, fi expresses the

compactness (or inertia momentum) of the Voronoi

cell associated with the seed i. This property is

suitable in many applications. For instance, in

sampling theory, we can imagine that Ω repre-

sents a space that needs to be approximated (e.g.,

a color space) and that the xi’s correspond to sam-

ples (e.g., the elements of a colormap). The cells Ωi = {z ∈ Ω|∀j 6= i, ‖z−xi‖ < ‖z−xj‖}
correspond to the subsets of the original space Ω that will be mapped to the same sample

xi. Minimizing the energy F ensures that each sample xi is representative of the same

amount of information in Ω. In the inset, the space Ω to be approximated is the black

icosahedron. As can be seen, the Voronoi cells are very regular, and distributed in a

way that preserves the structure of Ω. These properties are also suitable for geometry

processing applications. Note that the optimal quantization problem is an instance of

locational optimization, a more general problem important in geography and dynamic

systems, used to compute the optimal distribution of facilities with the lowest cost [100].

Centroidal Voronoi Tessellations :

As explained in [7, 100], the gradient of F is given by :

∂F

∂xi
= 2mi(xi − ci) (5.2)

where mi =
∫
z∈Ωi

ρ(z)dz and ci denote respectively the mass and centroid of Ωi. With

this formula of the gradient, it is easy to check that if each sample xi coincides with the

centroid of its Voronoi cell Ωi, then the xi’s correspond to a critical point (zero gradient)

of the energy F . This can be simply written as :

∀i, xi = ci =

∫
Ωi
ρ(z)zdz∫

Ωi
ρ(z)dz

(5.3)

This is a system of nonlinear equations since the boundaries of any VD cell Ωi are

determined by all the seeds xi.

A Voronoi tessellation that satisfies Equation 5.3 is referred to as a CVT (Centroidal

Voronoi Tessellation) [10, 48, 100]. This notion was recently popularized in the domain

of meshing and geometry processing [5, 45, 46]. Similar to image segmentation, the

concept of CVT and its algorithms have been transported to mesh segmentation and

simplification. Peyré and Cohen [105] extend CVT via defining geodesic metrics on

Chapter 5 Computing Centroidal Voronoi Tessellation 73

mesh surfaces. Due to the heavy computation of geodesic paths and centroids, CVT

under Euclidean metric is more efficient in practice. Isotropic and anisotropic CVT

are considered by Du et al. [47, 49] and Valette et al. [144, 145]. The algorithm

employed in the above applications is Lloyd’s method or the probabilistic method, with

slow convergence rate.

The remark that a CVT is a critical point of F naturally leads us to explain the historical

algorithm that constructs a CVT, namely Lloyd’s relaxation [86], which is a fixed-point

iteration, that simply consists in iteratively moving all the seeds xi to the centroid of

their Voronoi cells. Its convergence to a CVT is proved in some particular cases by Du

et.al [48, 50]. They show that besides being a fixed-point iteration that solves Equation

5.3, Lloyd’s method can be understood as a gradient descent that always decreases the

energy F without steplength control. The same type of analysis can be applied to the

discrete k-means clustering version [101].

At this point, there can be two different point of views about the definition of CVT.

• Geometric characterization : CVT is the solution of a system of non-linear

equations that says that each seed xi coincides with the centroid of its cell ci
(Equation 5.3).

• Variational characterization : CVT is a critical point of the energy F in

Equation 5.1. In many applications it is desirable to compute the minimizer of

F , rather than just a critical point, so that in the CVT the cells are as compact

as possible. This essentially excludes those nonstable critical points that are not

minimizers of F (more on this in Section 5.2.1). It is this type of CVT that we

aim to compute.

The distinction between these two point of views is at the heart of our approach. From

the variational point of view, Lloyd’s algorithm is a gradient descent, with linear speed

of convergence. We show how fully studying this variational point of view leads to new

methods for computing CVT with superlinear convergence and show its superior perfor-

mance over Lloyd’s method. We believe this represents a fundamental contribution to

CVT computation that is likely to have important impact in many areas of application.

5.1.2 The variational point of view

Lloyd’s method is a gradient-descent method that minimizes the function F (Equation

5.1) with linear convergence. To go beyond Lloyd’s method, we consider computing

Chapter 5 Computing Centroidal Voronoi Tessellation 74

CVT still by minimizing the function F (Equation 5.1), but this time using a quasi-

Newton method with superlinear convergence rate. It is well known that a better speed

of convergence can be obtained by using higher-order methods (e.g., Newton’s method

and its variants). However, due to the believed lack of smoothness of F and the appar-

ent complexity in computing Hessian for a large scaled CVT problem, there has been

little successful attempt in the literature in this direction [44, 70]. The Lloyd-Newton

algorithm [44] is essentially based on the above geometric characterization of CVT, since

it uses a different function whose minimizers include all the critical points of F , espe-

cially all those unstable ones. Our experiments confirm that Lloyd-Newton often gets

trapped by such unstable critical points that are not local minimizers of F , unless a

large number of Lloyd’s iterations are used first for initialization. We note that our

method is also different from Alliez et.al ’s variational tetrahedral meshing [5], which

uses a gradient-descent method.

Minimizing the piecewise-defined CVT energy function F is a numerical optimization

problem has several unconventional aspects. This raises interesting questions about the

structure and continuity of F , as we shall explain. Newton’s iteration for non-linear

optimization considers a 2nd-order approximation of F :

F (X + δX) ' F ∗(δX) = F (X) +∇FδTX + 1/2(δTXHδX)

where δX denotes a small displacement around X, ∇F denotes the gradient of F , and

H its Hessian. Newton’s iteration finds the step vector δX that minimizes the ”model

function” F ∗(δX) as follows :

solve HδX = −∇F (X)

X ← X + δX

As can be seen, since it uses second-order derivatives, Newton’s method has a chance

to work only if F is at least C2 [99]. Newton’s method is not suitable for large scale

problems due to its costly computation of the full Hessian. Therefore, in practice, one

often uses quasi-Newton methods to deal with large scale problems.

Despite the recent result [37] that shows that the function F is C1, a major impediment

to the development of fast Newton-like methods for CVT computation is the common

belief that the CVT function lacks the required C2 smoothness [70]. We shall show

that this belief is wrong, by proving that F is almost always C2. More specifically,

F is C2 in any convex domain in 2D and 3D. When the domain is non-convex, it

is still C2 in most cases, except in few seldom encountered configurations where it

becomes C1. Furthermore, these results carry over to the constrained or restricted CVT

Chapter 5 Computing Centroidal Voronoi Tessellation 75

problem on mesh surfaces. This surprising result on the smoothness of F provides the

necessary justification in our investigation on devising an efficient quasi-Newton method

to accelerate CVT computation.

Before entering the heart of the matter, we need to explain why this result is surprising,

and why studying the continuity of F is a difficult problem. If one wants to evaluate F

and its derivatives for a specific value of the parameters X, it is necessary to construct

the Delaunay triangulation of the vertices defined by X, then evaluate the integrals over

each cell of its dual Voronoi diagram (see Equation 5.1), then differentiate them. The

expression of these integrals is quite complicated, since the vertices of the integration

domains Ωi are the circumcenter of the Delaunay simplices. If we now imagine that we

move one of the vertices, then when the combinatorics of the Delaunay triangulation

changes, the formula of F changes as well! In other words, F is piecewise defined in the

space of X, and the pieces correspond to the subsets of X where the combinatorics of the

Delaunay triangulation does not change. In a Delaunay triangulation, a combinatorial

change corresponds to an edge flip, that occurs in 2D when four vertices become cocyclic

(or 5 vertices in 3D). These “degenerate” configurations are often considered as nuisances

in mesh generation. In contrast, in our case, they define “gateways” that connect the

pieces of X space. The common face shared by two pieces corresponds to a configuration

where 4 vertices are cocyclic (or 5 in 3D). Crossing such a gateway results in dramatic

changes in the expression of F . Surprisingly, as explained in Section 5.2, the continuity

of F is C2 at such transitions.

Contributions

We shall show that the CVT energy function is C2 in convex domains in 2D and 3D and

almost always C2 in non-convex domains. This surprising discovery has motivated us to

develop Newton-like optimization methods for efficient computation of CVT in 2D, 3D,

and on mesh surfaces. In summary, we make the following fundamental contributions

in both theory and application:

• We prove that the piecewise CVT function is C2 in a 2D convex region or a 3D

convex domain. Using the similar proof technique, we show that the CVT function

defined on a smooth surface is still C2 ;

• we accelerate the CVT computation by applying quasi-Newton methods that are

shown to be much more efficient than Lloyd’s method both in convergence rate

and computational time;

• we developed an efficient quasi-Newton method for computing the constrained

CVT and restricted CVT problems on mesh surfaces for remeshing and simplifi-

cation. Unlike other Lloyd-like CVT methods on meshes that perform only face

Chapter 5 Computing Centroidal Voronoi Tessellation 76

clustering, we treat the mesh as a piecewise smooth domain in the optimization

and enhance the accuracy of the Voronoi diagram computation by performing

face-splitting to achieve high-quality results.

5.2 Continuity Analysis

In this section, after recalling the variational formulation, we will give the key theorems

that characterize the smoothness of the CVT energy function.

5.2.1 Variational formulation

We consider the variational characterization of CVT as a minimizer of the energy F

(Equation 5.1), that can be written as :

minimize F (X) =
n∑
i=1

fi(X) =
n∑
i=1

∫
Ωi

ρ(z)‖z − xi‖2dz (5.4)

where the density function ρ(·) ≥ 0 satisfies supz∈Ω ρ(z) ≤ γ (γ is a constant value).

The variable X = (x1,x2, . . . ,xn) ∈ Γ = ΩnN is an N ×n-dimensional point. A natural

assumption is that no two seeds points are equal, i.e. ∀i 6= j,xi 6= xj . Hence, if we

denote B = {X|xi = xj , i 6= j}, we will only study the behavior of F (X) in the domain

Γc := Γ\B.

Figure 5.1: (Left): an unstable critical configuration for CVT of 2 samples in a square;
(right) a stable configuration, which is a minimizer of the CVT function.

Remark 5.1. The geometric characterization of CVT means that the seed points are

centroids of their cells. Actually this geometric characterization is only a necessary

condition when considering the variational point of view. Altough this corresponds

to a critical point of F , the geometric condition cannot guarantee that the obtained

cell structure is stable [48]. For instance, the configuration shown in Figure 5.1(left)

Chapter 5 Computing Centroidal Voronoi Tessellation 77

is unstable; it corresponds to a saddle point of F (i.e., the Hessian has some negative

eigenvalues) and so is not a local minimizer of F . A stable configuration (i.e., with a

positive-definite Hessian) is shown on the right.

5.2.2 Smoothness of F

We refer the reader to Section 5.5 for the proof of the following theorem.

Theorem 5.2. The 2D CVT function is C2 in Γc if Ω is convex.

With similar mathematical and geometric technique, we can prove the same conclusion

about 3D CVT.

Theorem 5.3. The 3D CVT function is C2 in Γc if Ω is convex.

Remark 5.4. In the more general locational optimization problem, the integration func-

tion is a smooth function W (‖z − xi‖), i.e., F (X) =
∑n

i=1

∫
z∈Ωi

ρ(z)W (‖z − xi‖) dz.

Theorem 5.2 and Theorem 5.3 still hold in this case.

l1

l2

p(t0)

p(t1)

In general, for a non-convex do-

main Ω, Theorems 5.2 and 5.3

no longer hold because the C2

smoothness is spoiled when a con-

tinuous part of ∂Ω belongs to a

face of CVT cells. In that case,

the CVT function is only C1. We

illustrate a 2D case in the right

figure. Suppose that there are

only two points in the shown 2D non-convex domain Ω. Let the point p move from

p(t0) to p(t1) vertically. When the bisector line crosses through the blue concave edge,

F is only C1. The same situation can occur in 3D as well. It can be shown that this

is the only situation where C2 smoothness of F is not preserved. It is easy to see that

such a situation rarely occurs in practice, since in most cases the faces of the Voronoi

cell are normally not parallel to the domain boundary when there are sufficiently many

seeds with a reasonable distribution (see Figure 5.2).

5.2.3 Experimental evidence of continuity

We use two simple examples to illustrate the smoothness of 2D and 3D CVT function.

We intentionally chose an examples with degenerate configurations in 2D to show that

Chapter 5 Computing Centroidal Voronoi Tessellation 78

Figure 5.2: A 2D non-convex CVT after several Lloyd’s iterations. The CVT energy
is C2 around this configuration.

sufficient continuity (C2) is obtained even if multiple edge flips are involved simultane-

ously.

Example 5.1. 2D case: Here Ω is the square box

[−1, 1]× [−1, 1] with eight seeds. One of the seeds

p moves along a trajectory p(t) shown in the inset

on the right. The Voronoi diagram changes during

the motion of p(t). Figure 5.3 shows the graphs

of the CVT F (t) and its derivatives F ′(t), F ′′(t)

with respect to the motion parameter t (the explicit

derivative formulae can be found in [7, 48, 70,

100]). It is clear that F ′′(t) is a C0 function, as

the consequence of the C2 smoothness of F (t). The

rapid changes in F ′′(t) correspond to the transition of VD and boundary affects.

Example 5.2. 3D case: Here Ω is a [−1, 1]3 cube and eight seed points in it. The seed

p (the yellow ball) moves along a trajectory p(t) shown in the Figure 5.4. The curves

of F (t), F ′(t) and F ′′(t) are shown.

5.3 Numerical Optimization

In this section we first present previous approaches on Newton’s method and then pro-

pose to use a quasi-Newton method – the BFGS method – for CVT computation. Since

2D and 3D CVT functions are C2, we are able to apply standard Newton-like nonlinear

optimization techniques [99] to find a local optimum of the CVT function F (X) by solv-

ing HδX = −∇F iteratively. We remind that the components of the gradient of F (X)

are given by ∂F/∂xi = 2mi (xi − ci) (Equation 5.2). Following the explicit formulae

Chapter 5 Computing Centroidal Voronoi Tessellation 79

Figure 5.3: Illustration of 2D CVT smoothness. The bottom right figure is a zoom-in
view of F ′′(t) in [0.08, 0.26] which shows F ′′(t) is indeed C0.

in [7, 100], the Hessian of F (X) can be computed. (We do not list these formulae here

as they are quite complex and lengthy.) Although the Hessian matrix H is sparse, it is

in general not positive-definite. Iri et al. [70] modified the Hessian by removing most

mixed-partial derivatives with respect to different seed points so that the Hessian is sym-

metric positive definite (SPD). But the modified Hessian is not a good approximation

of the original one and this slows down their implementation.

quasi-Newton method

With proper modification such as modified Cholesky factorization [99, 131], Newton’s

method is applicable in small and median size optimizational problems. But the main

disadvantage of Newton’s method is that the computation of the Hessian matrix, its

construction and modification are costly. Therefore it is normally not recommended

when there is a large number of seed points. For large scale CVT computation, some

quasi-Newton methods, such as BFGS, are good alternatives, since they only query the

function value and the gradient, involve only sparse matrix-vector multiplications. We

note that the computational cost of the gradient is the same as Lloyd’s method (see

Equation. 5.2). This means that there is no extra costly computation in quasi-Newton

methods. We have integrated a popular large scale bounded-constrained quasi-Newton

method L-BFGSB [27] that approximates H−1 by a sparse SPD matrix. This method

http://www.ece.northwestern.edu/~nocedal/lbfgsb.html

Chapter 5 Computing Centroidal Voronoi Tessellation 80

Figure 5.4: Illustration of 3D CVT smoothness.

reduces the computational time greatly while maintaining the super-linear convergence

rate.

5.3.1 Numerical examples

Since Lloyd’s method is currently the most commonly used, in this section, we will com-

pare it with our CVT computation based on a quasi-Newton method (i.e., L-BFGSB).

We will show that it is about one order of magnitude faster than Lloyd’s method. To

avoid converting the boundary constraints explicitly in L-BFGSB, especially when the

boundary of the domain is more complex than a square/cube, we reduce the increment

of the seed points if the L-BFGSB iteration moves them outside the domain (we have

tested both approaches, and the latter is both simpler to implement and more efficient).

Our tests were run on a PC with a 2.2GHz CPU and 2GB RAM and our implementa-

tion integrates QHULL to compute Voronoi cells. In our test, the density function is a

constant function.

http://www.qhull.org/

Chapter 5 Computing Centroidal Voronoi Tessellation 81

(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 5.5: (1): initial Voronoi tessellation. Non-hexagonal cells are shown in blue;

(2): F (X) vs the number of iterations; (3): D(X) =
√∑2000

i=1 (xi − ci)2/2000 vs the
number of iterations; (4): the ratio of the hexagonal cells; (5): the result after 100
iterations by Lloyd’s method; (6) the result after 1000 iterations by Lloyd’s method;
(7) the result after 100 iterations by L-BFGSB; (8) the result after 1000 iterations by

L-BFGSB.

Chapter 5 Computing Centroidal Voronoi Tessellation 82

Figure 5.6: Initial Voronoi tessellation, result after 890 iterations of L-BFGSB, F (X)

and D(X) =
√∑2000

i=1 (xi − ci)2/2000 vs the number of iterations. The middle figure
shows the internal structure of the final result.

Chapter 5 Computing Centroidal Voronoi Tessellation 83

Example 5.3. 2D CVT: 2000 seed points are sampled from [−1, 1]2 randomly and the

maximum iteration number is set 1000. Figure 5.5 shows the comparison of F (X) with

respect to the iteration number. After 625 iterations, L-BFGSB has met its stop crite-

rion.

453 iterations of L-BFGSB cost 98.037 secs and 1000 iterations of Lloyd’s method cost

182.764 secs. Therefore the timing ratio of each iteration of L-BFGSB and LLoyd’s

is 1.19 : 1. Compared to Lloyd’s method, the function value by L-BFGSB after 80

iterations is already the same as the result of Lloyd’s method after 1000 iterations. This

means that L-BFGSB is about 10 times faster than Lloyd’s method in attaining the

same accuracy. According to the Hexagon Theorem [97], most of the Voronoi cells are

supposed to be hexagons in CVT. So we also show in Figure 5.5 the ratio of the number

of hexagonal cells to the total number of cells, with respect to the number of iterations.

(The blue cells in Figure 5.5 indicate non-hexagonal cells.) L-BFGSB is again much

better than Lloyd’s method in this regard.

Example 5.4. 3D CVT: 2000 seed points are sampled from [−1, 1]3 randomly and the

maximum iteration number is set to 1000. Figure 5.6 shows the comparison of F (X)

with respect to the iteration number. After 890 iteration, L-BFGSB has met its stop

criterion.

Similarly to Example 5.3, the function value via L-BFGSB after 80 iterations is already

as small as that of Lloyd’s method after 1000 iterations. 890 iterations of L-BFGSB cost

851.2 secs and 1000 iterations of Lloyd’s method costs 900.10 secs. The timing ratio of

each iteration of L-BFGSB and LLoyd’s is 1.06 : 1. Hence, L-BFGSB is again about 10

times faster than Lloyd’s method in attaining the same accuracy.

5.4 CVT on Polyhedral Surfaces

5.4.1 Constrained and restricted CVT

The concept of CVT has been extended to manifolds, with several possible applications,

such as surface remeshing. Defining CVT in the geodesic metric [77, 80, 105] is a very

natural idea but the computation cost of geodesic CVT is relatively too high. Du et al.

proposed Constrained Centroidal Voronoi Diagram(CCVT) [49] that still uses Euclidean

metric but constrains the seed point to lie on the surface. We follow their definition in

our work. We denote a given smooth surface by Ω ⊂ R3, the seed points as {xi ∈ Ω}ni=1

Chapter 5 Computing Centroidal Voronoi Tessellation 84

and ∀i 6= j,xi 6= xj . The Voronoi region of xk is defined as:

Ωk = {z ∈ Ω | ‖z − xk‖ < ‖z − xj‖,∀j 6= k}.

Similarly we can define the valid domain for CCVT be Γc. The constrained centroid of

Ωk is defined as

ck = min
y∈Ω

∫
z∈Ωk

ρ(z)‖y − z‖2 dz

which exists but may be not unique [49]. The CVT function is defined by F (X) =∑N
i=1

∫
z∈Ωi

ρ(z)‖z − xi‖2 dz. Similar to 2D and 3D CVT, the minimizer of F (X) still

has nice centroidal properties: xi is the constrained centroid of Ωi. Du et al. proved

that Lloyd’s method works well for CCVT [49].

If seed points are not constrained on Ω, the corresponding Voronoi diagram is known as

a 3D VD restricted on Ω. Denote each Voronoi region in 3D by V or(i), the restricted

region Ωi is the intersection of V or(i) with Ω: Ωi = V or(i)
⋂

Ω. We call the centroidal

Voronoi diagram under this restriction as an RCVT (Restricted CVT). It is easy to see

that CCVT is a special type of RCVT.

5.4.2 C2 smoothness

Similarly to 2D CVT, the fast computation of CCVT and RCVT can benefit from the

smoothness of the CVT function. To have a well-defined problem, we assume that each

Voronoi region Ωi is singly connected and the shape of Ω is a C2 surface which has no

planar region. This condition avoids that this region coincides with any bisector plane of

two seeds, which would make F no-longer C2 (see Section 5.2.2). If Ω is a mesh surface,

we suppose that the facets are small enough with respect to the number of the seeds.

When the seeds {xi}ni=1 move, the adjacency relationship of all the Voronoi regions might

change, which in turn causes the number of the sides of some Voronoi regions to change.

As in the Euclidian case, F (X) is defined in a piecewise manner – its expression takes

different forms for combinatorially different Voronoi tessellations, and the change in this

expression occurs when there is a structural “jump” of VD. The continuity analysis is

similar to 2D-CVT proof detailed in Section 5.5, so we just point out the connection

briefly as follows. In the singular case, we introduce a slight perturbation and compute

the difference of CCVT or RCVT functions defined by different VDs. Similarly to

2D CVT, we consider the difference between two Voronoi diagrams CF1 and CF2, the

summation of the mass of the additional oriented curved regions U1 and U2 taken over

by CF1, CF2 in the 3-D space respectively is 0, thus the mass of (U1
⋂

Ω)
⋃

(U2
⋂

Ω) is

still 0. This result helps us to remove constant terms in the difference of
∫
CF1

ρ(z)‖z −
pi − δpi‖2 dz +

∫
CF2

ρ(z)‖z − pi − δpi‖2 dz. Since the integration is computed on the

Chapter 5 Computing Centroidal Voronoi Tessellation 85

surface, the difference is about O(h)3. With the similar argument of Theorem 5.2, we

have the following theorem:

Theorem 5.5. CCVT and RCVT are twice-differentiable in Γc where Ω is a convex

shape.

Note: if Ω is nonconvex, its boundary can also induce C1 smoothness.

5.4.3 Implementation

There are many works in remeshing and mesh segmentation via CVT [4, 49, 144, 145].

Their algorithms are based on Lloyd’s method which updates the seed point with the

centroid of its Voronoi region iteratively. Based on our smoothness analysis, we are able

to integrate quasi-Newton method (L-BFGSB) to speed up the computation.

Voronoi diagram computation

The most costly part of CVT computation is to determine the Voronoi region for each

seed. Face clustering by the flood-fill algorithm [36, 144, 145] has proven to be an

extremely fast method in approximating VD. Valette et al. employed face clustering

with approximated RCVT energy in their Lloyd algorithm [144]. Each VD is singly

connected and bounded by polygonal faces. However, their algorithm can terminate

at a sub-optimal solution after several iterations since the RCVT function actually is

defined on a discrete space because of their use of face clustering. In contrast, we treat

the triangular mesh as a continuous space, i.e, our optimization domain is a piecewise

continuous submanifold. In our implementation the boundary of VDs can cross the

faces of the mesh such that CVT energy can vary smoothly. Here we compare our result

with Valette’s algorithm using the accurate energy function. To allow a fair comparison,

and eliminate mesh dependence that their algorithm suffers from, we choose a geodesic

dome as our model. Valette’s face based method stops after 10 iterations, In this setting

the Lloyd method with face splitting stops after 100 iterations (‖δX‖ < 1e − 5). From

Figure 5.7, we can see that face-splitting method produces a better result.

Our VD computation consists of the following steps:

1. Initialization : We select n distinct points randomly from the input triangular

mesh. They serve as the initial seeds. Each seed is assigned a seed ID.

2. Clustering vertices and faces: We first build a kd-tree from the seed points which

is used for fast distance computation. For each vertex of the input mesh, its clustering

ID is the ID of the nearest seed point from it. For each face, if the clustering IDs of its

Chapter 5 Computing Centroidal Voronoi Tessellation 86

Figure 5.7: Voronoi diagrams and their dual. Left: face clustering; Right: face
splitting. Face clustering produces a 7-sided polygonal VD. Our result is more regular.

three vertices are the same, we assign this same clustering ID to this face; otherwise, the

face is labeled as a “split” face. For short, we denote the corresponding seeds of vertex

and face as sv and sf .

3. 3D Voronoi Computation: We choose 26 points from a twice-enlarged bounding

box B of the input mesh as the boundary points (from the corners, the middle points of

edges, the center of each faces of B). These points with the seeds serve as input for 3D

Voronoi computation done with QHULL. Therefore we obtain the bounded Voronoi cells

for each seed, we denote the Voronoi cell of s as P (s), which is a convex polyhedron.

4. Start Voronoi Region tracing on the mesh: A “split” face f = 4u1u2u3 and

a seed s are picked, where s is one of the clustering seeds of f ’s vertices. Since at least

one of faces of P (s) intersects with f , we test the intersection for each face of P (s) until

one face M intersects f . The intersection point located on one edge of f is pushed into

a stack.

5. Tracing by flooding: An entry is popped from the stack. It contains an intersection

point p and the corresponding M and f . Starting from the intersected point, we trace the

Chapter 5 Computing Centroidal Voronoi Tessellation 87

intersecting line of M and f . There are only two cases: (1) M intersects with another

edge e of f at q; (2) one edge E of M passes through f at r. For the first case, we

continue the tracing from q along the adjacent face of the input mesh on the other side

of e. For the second case, we store r and push the adjacent unprocessed faces of all the

Voronoi cells around E into the stack. The current M and f are labeled “processed”.

[Note: in (5) each intersection point with the corresponding f and s is stored in the

stack]. The above process is executed until the stack is empty. Then we check whether

each “split” face is “processed”; if not, we process it by goto (4).

6. Voronoi Region construction by splitting: For each “split” face f , we can obtain

the computed intersection points and the associated seeds on it from steps (4) and (5).

For each associated s, its corresponding intersection points on f and the vertices of f

are actually the boundary vertices of a convex part of f . We compute the convex hull

of these points and vertices of f which belongs to s to get the corresponding sub-region

for s.

Gradient computation

The quasi-Newton method involves gradient computation. The gradient of RCVT is

same as that in 2D and 3D CVT.

∂F

∂xi
= 2mi (xi − ci) (5.5)

where ci is the centroid of the Voronoi region Ωi of xi.

For CCVT, since it is also RCVT but the seed points are constrained on surface, its

gradient has the following form:

∂F

∂xi

∣∣∣∣
Ω

=
∂F

∂xi
−
(
∂F

∂xi
·N(xi)

)
·N(xi) (5.6)

where N(xi) is the normal of the surface Ω at xi. In our implementation, the updated xi
is always projected to the surface according to the property of the constrained centroid.

5.4.4 Experiments

We compare our method with Lloyd’s method in the 3D models (David in Figure. 5.8,

Homer in Figure. 5.9). It shows our L-BFGSB algorithm is much better than Lloyd’s

method like we did in 2D and 3D cases.

Chapter 5 Computing Centroidal Voronoi Tessellation 88

Figure 5.8: David model(Faces: 15836, vertices: 8014, seeds: 400). Our result after
80 iterations by L-BFGSB (200 seconds).

5.5 Appendix: Proof of Theorem 5.2

Let X = (xi)ni=1 be an ordered set of n seeds in a connected compact region Ω ⊂ R2.

The Voronoi region Ωi of xi is defined as

Ωi = {z ∈ Ω | ‖z − xi‖ < ‖z − xj‖,∀j 6= i}.

The Voronoi regions Ωi of all the seeds form the Voronoi diagram (VD) of X. We define

Fi(X) =
∫
z∈Ωi

ρ(z)‖z−xi‖2 dz for each seed xi, where ρ(·) ≥ 0 is a density function and

Chapter 5 Computing Centroidal Voronoi Tessellation 89

Figure 5.9: Homer model(Faces: 10202, vertices: 5103, seeds: 600). Our result after
80 iterations by L-BFGSB (220 seconds); Lower: F (X) vs time.

supz∈Ω ρ(z) ≤ γ for some constant γ > 0. The CVT problem is to find the minimizer of

the CVT function, or CVT energy,

F (X) =
n∑
i=1

Fi(X). (5.7)

Here the variable X = (x1,x2, . . . ,xn) is a 2 × n-dimensional point in Γ := Ωn ⊂ R2n.

A natural assumption is that no two seed points are equal, i.e., xi 6= xj ,∀i 6= j. Hence,

we shall consider the behavior of F (X) in Γc := {X ∈ Γ|xi 6= xj ,∀i 6= j}.

We first introduce the configuration space of the VD of X for all X ∈ Γc. An ordered

Chapter 5 Computing Centroidal Voronoi Tessellation 90

set X = (xi)ni=1 is non-degenerate if there do not exist four co-circular seeds in it. The

set of all non-degenerate X is denoted by Γµ Γc. The VD of a non-degenerate set

X defines a distinct topological configuration, denoted as CF (X), whose dual is the

unique Delaunay triangulation of the seeds in X. Hence, this Delaunay triangulation

encodes the structure of configuration CF (X), for instance as a set of integer triplets

that correspond to the triangles of Delaunay triangulation. Two non-degenerate sets X1

and X2 are equivalent if CF (X1) = CF (X2), and this relationship induces equivalence

classes in Γµ ⊂ R2n. Conversely, for a fixed non-degenerate X′, any configuration

C induces a ‘triangulation’ of the seeds in X′, which is not necessarily the Delaunay

triangulation of X′ and may not even be a valid triangulation of the seeds in X in the

sense of plane tessellation, since it merely records how the seeds in X′ are connected; it

becomes the Delaunay triangulation of X only when C = CF (X′). The configuration

space, denoted as C, is the collection of the configurations of all order sets X in Γµ.

Define G(C) = {X ∈ Γc|CF (X) = C} for any configuration C. Then the collection

{G(C)|C ∈ C} induces a partition of Γµ and is a covering of Γc.

Since the VD of a degenerate set X ∈ Γc is a degenerate geometric realization of more

than one configurations, we say that a degenerate point X ∈ Γc is associated with

multiple configurations. This reflects the fact that the Delaunay triangulation of a set

of co-circular seeds is not unique.

Every configuration Ck ∈ C has its associated expression Φ(X;Ck), called the evaluation

function, for defining the CVT evaluation, in the sense that the CVT function F (X) =

Φ(X;Ck) if CF (X) = Ck. Note that Φ(X;Ck) is well-defined and infinitely smooth over

Γc, even when CF (X) 6= Ck. This can be understood as follows. When CF (X) = Ck,

the integration domain for each seed xi is a convex polygon, denoted as Pi, with their

vertices defined by the circumcenters of certain triples of seeds. When CF (X) 6= Ck, the

circumcenters of the same triples of seeds will still be used to define the polygon Pi, which

is not necessarily convex or even simple but will be treated as polygon with oriented

sides. Then the evaluation function Φ(X;Ck) is consistently defined by performing the

integration in the oriented polygon Pi. Clearly, we just need to analyze the smoothness

of F (X) at a degenerate set X0 of seeds, which is a transition point between different

configurations. Since X0 is degenerate, its VD is a geometric realization of multiple

configurations associated with X0, and we denote the set of these configurations by

H(X0). Since F (X0) = Φ(X0;C) for all C ∈ H(X0), we need to show that the evaluation

functions of any two configurations in H(X0) have C2 contact at X0.

The degenerate set X0 contains several groups of seeds with each group containing at

least four co-circular seeds whose Voronoi cells have a common point, and the seeds of

different groups are on different circles. The Delaunay triangulation of the seeds of each

Chapter 5 Computing Centroidal Voronoi Tessellation 91

group is not unique, since any triangulation of these seeds is a Delaunay triangulation.

The triangulations of different groups are independent of each other, as can be seen as

follows. Two different groups can have at most two common seeds, since three different

points determines a circle. If two groups have two common seeds, say u and v, then

the two seeds must be adjacent seeds on the two circles of the two groups, for otherwise

the circles would not be empty, violating the property of a Voronoi diagram. Therefore,

the edge uv belongs to any Delaunay triangulation of all the seeds in X0. Hence, the

triangulations of different groups of co-circular points do not interfere with each other.

Now it is clear that the configurations in H(X0) differ from each other only in the

way how the points in different groups of co-circular points are triangulated. Two

configurations C1 and C2 are said to be adjacent if their dual triangulations differ by a

single edge flip. It is well known that any two triangulations of a set of points in 2D

can reach each other through a series of edge flips [23]. In our present specific setting,

it is evident that any two configurations in H(X0) are connected via a chain of adjacent

configurations, as the consequence of the independence among the triangulations of

different groups of co-circular points and the fact that any two triangulations of the

same group of co-circular points are connected by a series of edge flips. Therefore we

just need to show that the evaluation functions of any two adjacent configurations in

H(X0) have C2 contact at X0. Then the C2 contact of the evaluation functions of any

two configurations in H(X0) will be implied by transitivity.

Lemma 5.6. For any two adjacent configurations C1 and C2 in H(X0), their evaluation

functions Φ(X;C1) and Φ(X;C2) have C2 contact at X0.

Proof: Suppose that an arbitrary perturbation δX of order O(h), where h > 0 is

arbitrarily small, is applied to X0 to yield X1 = X0 + δX. Consider the second order

Taylor expansions of Φ(X;C1) and Φ(X;C2) at X0: Φ(X1;C1) = Q1(x0; δX) + O(h3)

and Φ(X1;C2) = Q2(x0; δX) + O(h3). In order to show that Φ(X;C1) and Φ(X;C2)

have C2 contact at X0, it suffices to show that Φ(X1;C2) − Φ(X1;C1) = O(h3), since

this implies that Q1(X0; δX) = Q2(X0; δX) for any perturbation δX of order O(h), i.e.,

all the derivatives of Φ(X;C1) and Φ(X;C2), up to the second order, agree with each

other at X0.

Chapter 5 Computing Centroidal Voronoi Tessellation 92

x1

x2

x3

x4

R2,1

R2,2

R2,3

R2,4

l1 l2

l3l4

u1

u3

x4

x3

l1
x1

x2

l2

l3l4

u4

u1

u2

u3

x3

R1,1

x1

x2x4

R1,2

R1,3

R1,4

l1 l2

l3l4

u4 u2

Figure 5.10: Geometric analysis of the CVT energy function F ’s continuity during
an edge flip.

x1

x2

x3

x4

Since C1, C2 ∈ H(X0) are adjacent, there ex-

ist four co-circular seeds in {xj}kj=1 such that

the triangulation of C1 differs from that of C2

by flipping the diagonals of the quadrilateral

formed by these four co-circular seeds. With-

out loss of generality, we suppose that those

are xi, i = 1, 2, 3, 4 (see the figure on the

right). The local structures of the VD’s of

C1 and C2 as determined by the four points

xi are shown in Figure 5.10). Denote the in-

tegration domain of the seed xi by R1,i and

R2,i respectively as they appear in C1 and C2, i = 1, 2, 3, 4. Since C1 and C2 are

adjacent, their structures are identical everywhere except for at the regions R1,i and

R2,i; hence, the difference between Φ(X;C1) and Φ(X;C2) can only be caused by the

difference of their integration domains R1,i and R2,i, i = 1, 2, 3, 4. Denote gi(z) =

ρ(z)‖z − xi‖2, and define φ1,i =
∫
z∈R1,i

gi(z)dz and φ2,i =
∫
z∈R2,i

gi(z)dz, i = 1, 2, 3, 4.

Then Φ(X;C2)− Φ(X;C1) =
∑4

i=1[φ2,i − φ1,i].

Chapter 5 Computing Centroidal Voronoi Tessellation 93

Let Ti denote the following oriented triangles: T1 : ∆u1u2u4, T2 : ∆u1u3u2, T3 :

∆u2u3u4 and T4 : ∆u1u4u3 (see Figure 5.10), where u1, u2, u3, u4 are the circumcen-

ters of ∆x1x2x4, ∆x1x2x3, ∆x2x3x4 and ∆x1x3x4 respectively.

Clearly, R2,i = R1,i
⊕
Ti, i = 1, 2, 3, 4, where

⊕
denotes the union of oriented areas.

Furthermore, we observe that T ≡ ⊕4
i=1 Ti = ∅, i.e., the union of the four oriented

triangles is the empty set. About the integrand gi(z) we have the following observation :

at X0, since the seeds xi, i = 1, 2, 3, 4, are co-circular, we have ‖xi−O‖ = r, where O is

the center and r the radius of the circle S containing the four seeds xi. Clearly, after the

perturbation, at X1 we have ‖z−O‖ = O(h) and, consequently, gi(z) = ρ(z)‖z−xi‖2 =

ρ(z)[r2 + O(h)] for any z ∈ Ti, i = 1, 2, 3, 4. Finally, we note that the area of each

triangle Ti is
∫
z∈Ti

dz = O(h2). From these observations it follows that

Φ(X;C2)− Φ(X;C1) =
4∑
i=1

[φ2,i − φ1,i]

=
4∑
i=1

[
∫
z∈R2,i

gi(z)dz −
∫
z∈R1,i

gi(z)dz]

=
4∑
i=1

∫
z∈Ti

gi(z)dz =
4∑
i=1

∫
z∈Ti

ρ(z)[r2 +O(h)]dz

= r2
4∑
i=1

∫
z∈Ti

ρ(z)dz +
4∑
i=1

∫
z∈Ti

O(h)dz

= r2

∫
z∈⊕4

i=1Ti

ρ(z)dz +O(h3)

= r2

∫
z∈∅

ρ(z)dz +O(h3) = O(h3).

So far we have shown the C2 smooth of the CVT function F when a perturbation of the

seeds do not affect or involve the boundary ∂Ω of the domain Ω. For the convex domain.

Ω, it is not difficult to prove that F is still C2 when the boundary ∂Ω is involved in the

boundary update of a Voronoi cell, following the same idea of the proof above. We will

not repeat the detail here. �

Hence, Theorem 5.2 is proved.

Chapter 6

Geometric Modeling with Conical

Meshes and Developable Surfaces

6.1 Introduction

The original motivation for this research comes from architecture, where freeform shapes

are becoming increasingly popular, but the actual construction poses new demands on

the underlying geometry. Gehry Partners and Schlaich Bergermann and Partners [56]

argue why freeform glass structures with planar quadrilateral facets are preferable over

structures built from triangular facets or non-planar quads. The authors also show a

few simple ways to construct quad meshes with planar faces. However, despite the huge

amount of work on mesh processing and the interest in discrete differential geometry

[40], we are not aware of a thorough investigation of this topic from the perspective of

geometry processing.

The study of quad meshes with planar faces – called PQ meshes henceforth – will lead us

to interesting geometric results, in particular to conical meshes, a discrete counterpart

of principal curvature lines which have not been considered before. Algorithms which

perturb a quad mesh into a PQ mesh can nicely be combined with subdivision. This

makes subdivision a promising tool for architectural design and also provides a new and

elegant approach to modeling and approximation with developable surfaces.

6.1.1 Previous work

Discrete differential geometry.

95

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 96

Figure 6.1: Conical meshes are planar quad meshes which discretize principal cur-
vature lines, possess offset meshes at a constant distance as well as planar connecting
elements supporting the offset meshes (upper). Therefore they are especially suited
for architectural design with glass structures (lower). This student project of a rail-
way station by B. Schneider was generated by a subdivision-type process (see also

Figure. 6.14).

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 97

PQ meshes have first been systematically addressed by R. Sauer, as summarized in his

monograph [126] on difference geometry, one of the precursors of discrete differential

geometry [19, 40, 62, 108]. It has been observed that PQ meshes are a discrete counter-

part of conjugate curve networks on surfaces. They appear in the mathematics literature

under the name of quadrilateral meshes, which actually means quad meshes with the ad-

ditional property that all quads are planar. The interesting case of circular meshes

where all quads possess a circumcircle has been introduced in [93]. Circular meshes are

discrete analogues of the network of principal curvature lines. Pointers to the literature

on PQ meshes and circular meshes, especially to higher-dimensional generalizations, are

given in [19] and [22]. Convergence of circular meshes towards the network of principal

curvature lines is the topic of [21].

Quad meshes.

The computation of quad-dominant meshes from smoothed principal curvature lines has

been presented in [3]. Although the faces of these meshes are not exactly planar, one

should expect that they are at least approximately planar. Thus such meshes can serve as

an input to algorithms presented below, which compute numerically precise PQ meshes

and conical meshes by optimization. Variational shape approximation according to [36]

aims at the optimal placement of a given number of planar faces, which, in general,

are not quadrilaterals. Other recent contributions to quadrilateral remeshing (see e.g.

[43, 92, 123]) do not try to achieve planarity of quads.

Developable surfaces.

An arrangement of n planar quads in a single row (see Figure. 6.2) is a discrete rep-

resentation of a developable surface. In this way the study of PQ meshes is related to

the computational geometry of developable surfaces. Recall a few facts from differential

geometry [42, 115]: A developable surface Γ is the envelope of a one-parameter family

of planes. Each of these planes touches the surface along a straight line, a so-called

ruling. There are three main types: Either rulings are parallel (Γ is a cylinder surface),

or they pass through a fixed point s (Γ is a cone with vertex s), or they are tangents

of a space curve r (Γ is a tangent surface and r is its singular curve). Because devel-

opable surfaces can be mapped into the plane without distortion, they possess a variety

of applications, for example, in sheet-metal and plate-metal based industries and archi-

tecture. Modeling with developable surfaces is a nontrivial task, which is only weakly

included in current 3D modelers. Several ways of geometric design with developables

have been proposed. One can use B-spline ruled surfaces and express developability via

nonlinear constraints [9, 32]. Via duality such constraints can be avoided, at the cost of

a less intuitive plane-based control structure [115]. There are also contributions based

on constrained triangle meshes [55, 95, 150]. Singularities in crumpled sheets have also

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 98

received attention, see e.g. [29, 55]. Recently there has been interest in developable

surfaces for mesh parameterization [72] and mesh segmentation [157].

Surfaces in architecture and aesthetic design.

Freeform geometries are becoming increasingly popular in architecture, thus demand-

ing adapted modeling methods which take the actual construction and fabrication into

consideration. The Smart Geometry group (http://www.smartgeometry.com) promotes

research in this direction; a good overview of the state of the art may be found in [75].

Geometric modeling for aesthetic design and ‘optimal geometry’ are the topics of [136]

and [139].

6.1.2 Contributions and overview

• We introduce conical meshes and demonstrate their superiority over other types of

meshes for architectural design and other applications where planarity and exact offset

property are demanded. The conical mesh is a new type of principal meshes and it

possesses the property that offsetting the face planes by a constant distance yields a

planar mesh of the same connectivity, which is again a conical mesh. This is a very

useful property in layer composition constructions for architecture, where each layer has

to be covered by planar panel elements and the geometry of the outermost layer should

also be valid for the offsets which represent the layer composition (see Figures 6.1, 6.11,

6.12a, and 6.15).

• We propose the PQ perturbation algorithm for computing a PQ mesh from an input

quadrilateral mesh. By combining PQ perturbation with a surface subdivision scheme

we obtain a powerful tool for modeling not only conical meshes, but also circular meshes

and general PQ meshes. When applied to PQ strips, it leads to an effective and elegant

approach to modeling developable surfaces.

In Section. 6.2 we elaborate on the relation between PQ meshes to conjugate curve

networks for understanding the variety of PQ meshes. Section. 6.2.2 discusses the PQ

perturbation algorithm. In Section. 6.3 we combine subdivision and PQ perturbation

to get a hierarchical construction of PQ meshes. In particular, we obtain developable

subdivision surfaces. Conical meshes are introduced in Section. 6.4, and their main

properties are derived. Section. 6.5 discusses how to approximate given data by a conical

mesh via optimization of a quad mesh, possibly derived from robustly computed principal

curves on an appropriate scale. We discuss our results in Section. 6.6 and conclude the

chapter with some pointers to future research in Section. 6.7.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 99

(a) a0a1

an b0
b1

bn

r1
r2

rn

(b)

v0,k

v0,k+1

vn,k

Figure 6.2: (a) PQ strip as discrete model for a developable surface. (b) Discrete
developable tangent to PQ mesh along a row of faces.

z

x

c

T1

Γ

T2

Figure 6.3: Visualization of conjugacy via shadow contours.

6.2 PQ Meshes and PQ Perturbation

Conjugate Curves.

Quad meshes with planar faces may be seen as a discrete version of so-called conjugate

curve networks on a surface [126]. First we explain conjugate surface tangents at a point

x of a surface Φ (see Figure. 6.3): Suppose that the straight line T1 is tangent to the

surface at x. Choose a light source z on T1. Then the line T2 tangent to the shadow

contour (contour generator) c at x is conjugate to T1. T1 is contained in the conical

surface Γ of surface tangents passing through the light source z. Here we could also use a

parallel illumination, with z at infinity. An alternative definition of conjugate directions

in terms of the second fundamental form of a surface is given by [42, p. 150].

The above is a special case of the following more general property: If Γ is the developable

surface enveloped by the tangent planes along a curve c ⊂ Φ, and T1 is a ruling of

Γ passing through the point x ∈ c, then the line T2 tangent to the curve c at the

point x is conjugate to T1. This relation turns out to be symmetric (see e.g. [115]).

Asymptotic directions are self-conjugate. A conjugate network of curves consists of two

one-parameter families A,B of curves which cover a given surface Φ such that for each

point p ∈ Φ there is a unique curve of A and a unique curve of B which pass through x,

and furthermore, the tangents of these two curves at x are conjugate. We may prescribe

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 100

l

Figure 6.4: Various conjugate networks and their suitability for meshing purposes.
Left: The network of generating curves in a translational surface Φ is conjugate. Cen-
ter: For any surface Φ, the intersection curves (yellow) of Φ with planes through a
fixed line l and the contour generators (blue) for viewpoints on l form a conjugate net-
work. Right: Isophotes (yellow) and curves of steepest descent (blue). Such networks
may be unsuitable for meshing even for simple surfaces, if its curves do not intersect

transversely. This is caused by asymptotic directions (see frame).

family A and get family B by integration of the vector field of directions conjugate to

the tangents of family A.

Examples of conjugate networks on surfaces are:

— The network of principal curvature lines is always conjugate.

— In a translational surface of the form x(u, v) = p(u) + q(v), generated by a trans-

latory motion of a profile curve p(u) along a directrix curve q(v), or vice versa, the

isoparameter lines form a conjugate network (Figure. 6.4, left).

— The movement of a viewpoint z along some curve in space produces a family of con-

tour generators “c(z)” on a given surface Φ, where z is interpreted as a light source. The

curves conjugate to the c(z)’s are called epipolar curves and are found by integrating

the field of light rays tangent to the surface Φ. These curves arise in 3D surface recon-

struction from apparent contours in an image sequence [33]. Figure. 6.4 (center) shows

the case where z moves along a straight line l.

— The condition that the surface normals form a constant angle with the z-axis defines

an isophotic curve. These isophotes are conjugate to the system of curves of steepest

descent with respect to the z-axis (see Figure. 6.4, right, and e.g. [115]).

6.2.1 PQ meshes

Let us start with a PQ strip, which means a single row of planar quadrilateral faces.

The two rows of vertices are denoted by a0, . . . ,an and b0, . . . ,bn (see Figure. 6.2). It

is obvious and well known that such a mesh is a discrete model of a developable surface

(see e.g. [115, 126]). This surface is cylindrical, if all lines aibi are parallel. If the lines

aibi pass through a fixed point s, we obtain a model for a conical surface with vertex

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 101

s. Otherwise the PQ strip is a patch on the tangent surface of a polyline r1, . . . , rn,

as illustrated by Figure. 6.2: consecutive lines aibi and ai+1bi+1 are co-planar and

thus intersect in a point ri+1. It follows that both ai and bi are contained in the line

riri+1. This property is the direct analogue of the well known fact that, in general, a

developable surface is part of the tangent surface of a space curve. The lines riri+1 serve

as the rulings of the discrete tangent surface, which carries the given PQ strip. The

planar faces of the strip represent tangent planes of the developable surface.

Now we consider a general PQ mesh with vertices vi,j , i = 0, . . . , n, j = 0, . . . ,m. For

theoretical investigations we will always assume that interior mesh vertices have valence

four; vertices with valence 6= 4 are like singularities in a curve network and require

special treatment. In practice, meshes will not consist of quads only – n-gons with

n 6= 4 likewise are treated as singularities.

Recall the property mentioned above which characterizes conjugate curve networks: the

envelope of tangent planes along a curve of family A is a developable surface, whose

rulings are tangent to curves of family B. We can easily see that the row and column

polylines of a PQ mesh enjoy a discrete version of this property: Each row of faces

vi,j (we let j = k, k + 1) is a PQ strip, which represents a discrete developable surface

tangent to the mesh (Figure. 6.2). The row of vertices v0,k, . . . ,vn,k can be seen as the

polyline of tangency between the mesh and this developable surface. The rulings of the

developable surface are spanned by the edges vi,k,vi,k+1 for i = 1, . . . , n. The same

lines occur as tangents of the column polylines vi,0, . . . ,vi,m. It follows that the system

of row and column polylines are a discrete conjugate network of polylines. Moreover, a

discrete developable surface tangent to a PQ mesh along a polyline is given by a row (or

a column) of quad faces.

Consequently, if a subdivision process, which preserves the PQ property, refines a PQ

mesh and produces a curve network in the limit, then the limit is a conjugate curve

network on a surface.

6.2.2 PQ perturbation

Given a quad mesh with vertices vi,j , we want to minimally perturb the vertices into new

positions such that the resulting mesh is a PQ mesh. One way to solve this problem is

by a Sequential Quadratic Programming method (SQP, see e.g. [89]), which minimizes

fairness and closeness functionals subject to the planarity condition. Another way is

a penalty method which optimizes a linear combination of functionals which express

planarity, fairness, and closeness to the original mesh, weighted in a way which ensures

numerically exact planarity.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 102

In order to express planarity of a quad face Qij , we consider the four angles φ1
i,j , . . . ,

φ4
i,j enclosed by the edges of Qij , measured in the interval [0, π]. It is known that Qij is

planar and convex if and only these angles sum up to 2π. We use the notation

cpq,i,j := φ1
i,j + . . .+ φ4

i,j − 2π = 0. (6.1)

Below we need sums of the form
∑

i,j λpq,i,jcpq,i,j , which we write as λTpqcpq, i.e., the

inner product of the vectors λpq = (λpq,i,j) and cpq = (cpq,i,j).

For modeling developable surfaces it is important that the planarity criterion also works

for a thin planar quad which converges to a straight line segment. Here, the constraints

in (6.1) serve to maintain convexity and thereby avoid singularities, but they cannot

express planarity in the limit (the angle sum will tend to 2π in any case, assuming

convexity). Therefore we add another planarity term: Denote the unit vectors along

the edges in quad Qi,j by ei,j := (vi,j+1 − vi,j)/‖vi,j+1 − vi,j‖, ei+1,j , fi,j := (vi+1,j −
vi,j)/‖vi+1,j − vi,j‖, and fi,j+1. Then, using the four vertices in an equal way, the

planarity of Qi,j is enforced by the following constraints,

c1
det,i,j := det(ei,j , ei+1,j , fi,j)= 0, c2

det,i,j := det(ei,j , ei+1,j , fi,j+1)= 0,

c3
det,i,j := det(ei,j , fi,j , fi,j+1)= 0, c4

det,i,j := det(ei+1,j , fi,j , fi,j+1)= 0.

A linear combination of these constraints as used below is denoted by λTdetcdet. Note

that these terms are included as effective planarity constraints only when computing

PQ strips.

In addition, we introduce two energy terms to ensure that the resulting PQ mesh has a

fair shape and stays close to the input mesh. For aesthetic design we use the fairness

term ffair, which includes simplified bending energies of the mesh’s row and column

polygons.

ffair :=
∑

i,j
[(vi+1,j − 2vi,j + vi−1,j)2 + (vi,j+1 − 2vi,j + vi,j−1)2].

At the boundary not all vertices required by the sum exist, so in addition we define that

any undefined square is set to zero. For the PQ mesh to remain close to the surface Φ

defined by the original mesh, we need to minimize the distances of the perturbed mesh

vertices from the original mesh surface Φ by minimizing

fclose :=
∑

i,j
‖vi,j − yi,j‖2,

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 103

where yi,j is the closest point (i.e., footpoint) on Φ to vi,j . We put the above terms

together and define the Lagrangian function

fPQ := w1ffair + w2fclose + λTpqcpq + λTdetcdet. (6.2)

Note that the term λTdetcdet is needed only when computing a PQ strip. SQP minimizes

the energy term w1ffair +w2fclose subject to the constraints cpq = 0 and cdet = 0. That

is, the minimizer gives a PQ mesh that has a fair shape and is close to the original

surface Φ. The desired minimum is a stationary point of the Lagrangian fPQ. Note that

λpq and λdet are determined automatically by the SQP method, while w1 and w2 are

user specified constants to control relative weighting of fairness and geometric fidelity.

SQP uses a sequence of Newton-like iterations. In each round we compute the Hessians

and gradients of the four terms which occur in the Lagrangian fPQ of (6.2) to form a

local quadratic approximation of fPQ at the current point. Computation of the Hessians

is straightforward, except for the squared distance term ‖vi,j − yi,j‖2 in fclose, which

involves the footpoints yi,j as dependent variables, since vi,j−yi,j is always perpendicular

to the tangent plane of Φ at yi,j . We use [(vi,j−yi,j)·ni,j]2 as a quadratic approximation

of ‖vi,j − yi,j‖2. This approximation arises from Gauss-Newton minimization of the

squared distance of vi,j from Φ and has been successfully used for registration [30] and

curve and surface approximation (see e.g. [15]).

Rewrite fPQ in (6.2) in the form fPQ(x, λ) = f(x) − λT c(x), where x denotes the

unknown vertex coordinates, f = w1ffair + w2fclose and −λT c(x) = λTpqcpq + λTdetcdet.

Let J denote the Jacobian matrix of the constraints c(x) and H denote the Hessian

matrix of fPQ(x, λ) w.r.t. x; (note that the contribution to H by the fclose term is a

Gauss-Newton approximation). The update step x→ x+ h is solved from[
H −JT

−J 0

][
h

λ

]
=

[
−∇f(x)

c(x)

]
. (6.3)

We use a soft line-search strategy [89] to determine the actual update step size αh,

0 < α ≤ 1, to ensure stable convergence and sufficient descent — so x is updated by

Figure 6.5: PQ perturbation without a closeness term applied to a highly un-planar
mesh consisting of only a few quads.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 104

fPQ,penalty

= 2.5× 10−6

fPQ,penalty = 5.2× 100

Figure 6.6: PQ perturbation acting on a quad-dominant mesh (left) extracted from
principal curves (cf. Section 6.5). All faces, not only quads, are planarized (planarity
is visualized via flat shading). The shape change noticeable at the ears is due to
concentration of highly nonplanar quads in the original mesh. Higher geometric fidelity
at the cost of fairness is easily possible. At right: color coded deviation from original

mesh (max. 3% of object size).

x∗ = x+ αh.

The above coefficient matrix is highly sparse and has the size (3M+ 5N) × (3M+

5N) or (3M + N) × (3M + N) if not including the terms λTdetcdet, where M is the

number of vertices and N the number of faces of the input mesh. We use the sparse

matrix packages TAUCS and UMFPACK. Our implementation of SQP works efficiently

for meshes of small or medium size (up to 1000 vertices). Our experience shows that

for larger meshes it is more efficient to use a penalty method: We combine the angle

constraints in (6.1) in the function

fangle :=
∑

i,j
(φ1
i,j + . . .+ φ4

i,j − 2π)2, (6.4)

and similarly the determinant terms in fdet. Then, we minimize the objective function

fPQ,penalty = w1ffair + w2fclose + µfdet + fangle. (6.5)

This is an unconstrained least squares problem which can be solved effectively by the

Gauss-Newton method with L-M regularization [74]. We let µ = 1 when considering a

PQ strip, and µ = 0 otherwise. For stability reasons, the coefficients w1 and w2 have

higher values at the start of the iteration. Later, we let w1 and w2 tend to zero, so that

planarity can be achieved with high accuracy. The following strategy works in practice:

At the beginning, w1, w2 are chosen such that fangle dominates in (6.5), and they are

divided by 2 in every iteration. In case of small values of w1 and w2, near-singular linear

systems are solved via SVD.

In many cases the method exhibits much faster convergence than the SQP method. An

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 105

inherent problem of the penalty method are stability deficiencies near the optimum.

Therefore in practice we use the penalty method to quickly derive an initial mesh near

a local minimum, and then employ SQP. PQ perturbation works very well if the input

quad mesh is reasonably close to a PQ mesh (cf. Figure. 6.6). Figure. 6.5 shows an input

mesh which is far from planar, so PQ perturbations results in large deviations from the

original. In order to planarize n-gons with n > 4, we use the fact that condition (6.1)

generalizes to n-gons.

6.3 Subdividing Developables and PQ Meshes

To generate a PQ mesh from a coarse control mesh, we combine the PQ perturbation

algorithm with a quad based subdivision algorithm like Doo-Sabin or Catmull-Clark in

an alternating way: We subdivide a given PQ mesh once, and then apply PQ perturba-

tion to make the resulting faces planar (see Figure. 6.7). These two steps are iterated

to generate a hierarchical sequence of PQ meshes.

A single PQ strip can be subdivided by applying a curve subdivision rule like Chaikin’s

to its boundaries, and subsequent application of PQ perturbation in order to achieve

face planarity. Alternating application of these two steps is a subdivision algorithm

which generates developable surfaces. Because of our treatment of PQ perturbation as

a black box it is in general not possible to write down the limit of this subdivision

process explicitly. Nevertheless it is a much simpler design tool than developable B-

spline surfaces, whose control points have to satisfy a set of nonlinear constraints.

As illustrated in Figure. 6.8, the relation of the input PQ strip to the final developable

surface is very intuitive – certainly more so than the dual control structure in terms of

tangent planes, which can be used to avoid nonlinear constraints (cf. [115]).

In the perturbation phase of the algorithm, the term fdet in (6.5) is important for

maintaining planarity. The term fangle discourages self-intersecting quads and thus acts

against the common problem that the singular curve enters the designed patch. Finally,

ffair helps to prevent a zig-zag effect in adjacent quads.

6.4 Conical Meshes

Principal curvature lines form a special network of conjugate curves on a surface. Apart

from umbilic points, where this network possesses singularities, it behaves nicely, since

its curves intersect at right angles. This is not necessarily true for an arbitrary conjugate

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 106

(a) (b) (c)

Figure 6.7: (a)–(c): Hierarchy of PQ meshes obtained by iterative application of
Catmull-Clark subdivision and PQ perturbation.

(a) (b) (c)

Figure 6.8: Developable subdivision surfaces generated with the perturbed cubic
Lane-Riesenfeld algorithm; this nonlinear subdivision scheme keeps the planarity of
quads and thus achieves developability of the limit. The control entity (a) is a piecewise-

planar PQ strip. (b) and (c): 1 and 3 rounds of subdivision.

curve network; asymptotic (self-conjugate) directions give rise to degenerate situations

that make such networks unsuitable for meshing purposes (Figure. 6.4).

A particular discretization of the network of principal curvature lines are the circular

meshes, which are quad meshes whose quads are not only planar, but also have a cir-

cumcircle [19, 93]. It is however easy to extend our PQ perturbation algorithm to the

computation of circular meshes (see Section 6.5 and Figure. 6.17). It turns out that

another discrete analogue of the principal curvature lines – the conical meshes to be

introduced in this section – have geometric properties essential for architectural de-

sign of freeform structures. For their computation via an augmented PQ perturbation

algorithm, see Section. 6.5.

A vertex v of a quad mesh is a conical vertex if all the four (oriented) face planes meeting

at v are tangent to a common (oriented) sphere. This is equivalent to saying that these

oriented face planes are tangent to a common oriented cone of revolution Γ (see Figure.

6.10a). The axis G of Γ can be regarded as a discrete surface normal at that vertex.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 107

Figure 6.9: Developable Möbius band in the shape of a trefoil knot. Left: PQ strip
as control structure. Right: Result of subdivision augmented by PQ perturbation.
Numerical smoothness is C2, as seen from smooth reflection lines (fPQ,penalty = 2.9×

10−11).

We call a PQ mesh a conical mesh if all of its vertices of valence four are conical. For

theoretical investigations, we consider only regular quadrilateral meshes whose vertices

have valence 4, except for valence-2 or valence-3 vertices on the boundary. A conical

mesh is in some sense dual to a circular mesh [114]. Instead of requiring the four vertices

of a quad to be co-circular, we require that the four (oriented) faces incident with a mesh

vertex be tangent to an (oriented) cone of revolution. We will see that conical meshes,

Γ

G

R1

L1

R2

L2 R3

L3

R4

L4

ω1

ω2

ω3

ω4

Qi−1,j−1

Qi−1,j

Qi,j−1

Qi,j

Qi+1,j−1

Qi+1,j

Gi,j Gi+1,j

vi,j vi+1,j

ri,j
(a) (b)

Figure 6.10: (a) Configuration of the faces of a conical mesh at a vertex. The faces
touch the common cone Γ along rulings R1, . . . , R4, and have interior angles ω1, . . . , ω4.
(b) Faces of a conical mesh at two adjacent vertices vi,j and vi,j+1, and the intersection

point ri,j of neighboring axes Gi,j , Gi,j+1.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 108

like circular meshes, discretize the network of principal curvature lines.

There are exactly three types of conical mesh vertices, which can be characterized geo-

metrically as follows. A small sphere S centered in a mesh vertex v intersects the mesh

in a simple 4-sided spherical polygon P . If the four vertices pi of P cannot be contained

in the same hemisphere, v is of the hyperbolic type. Otherwise (i.e., the four vertices pi
are contained a hemisphere) v is either of elliptic type (see Figure. 6.10a) or of parabolic

type, depending on whether P is convex or not. These three types of mesh vertices are

discrete analogues of hyperbolic points, elliptic points and parabolic points on a smooth

surface.

An angle criterion for conical meshes.

There is a simple condition characterizing a conical mesh in terms of the interior angles

of its quads. This characterization is also important for computing conical meshes (see

Equation. (6.6) in Section 6.5).

Geometry Fact 1. A vertex of a quad mesh is a conical vertex if and only if the angle

balance ω1 + ω3 = ω2 + ω4 is satisfied (see Figure. 6.10 for notation).

Here we assume that no two adjacent faces incident with a mesh vertex are co-planar,

for otherwise the vertex is always conical. The (oriented) great circles that carry the

edges of the spherical polygon P are tangent to a common (oriented) circle if and only

if the vertex is conical. For elliptic vertices, Geometry Fact 1 follows from a result by A.

J. Lexell which states that a convex spherical quadrilateral has an incircle if and only

if the sums of opposite sides are equal. A proof of Geometry Fact 1 for all types of

mesh vertices is given in Section 6.8. As an example we now use the elliptic vertex in

Figure. 6.10a to illustrate why the angle balance holds in this case.

Consider the right circular cone Γ tangent to all the four faces incident with v, the

vertex of Γ. Suppose that the face plane Qi touches Γ along the ruling Ri. Let Li
denote the intersection line of Qi and Qi+1. Denote αi = ^(Li, Ri). Then, by symmetry,

^(Li, Ri+1) = ^(Li, Ri) = αi. Since ωi = αi+αi+1, we have ω1+ω3 = α1+α2+α3+α4 =

ω2 + ω4.

Offsetting conical meshes.

Meshes with planar faces (including triangle meshes, cf. e.g. [76]) in general do not have

the property that offsetting all faces by a fixed distance leads again to a mesh with

the same connectivity, since planes meeting at a common point in general do not meet

again at a common point after offsetting. Conical meshes, however, have this property

— they possess conical quad meshes as offset meshes, as illustrated by Figures 6.11 and

6.12: The faces of a conical mesh incident with a vertex vi,j are tangent to an oriented

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 109

Figure 6.11: A conical mesh has conical offset meshes, here illustrated by a planar
cut through a sequence of offsets.

cone with axis Gi,j . After offsetting, they are still tangent to a cone with the same

axis. This behavior of the discrete surface normal Gi,j is consistent with the behavior of

the ordinary surface normal of a smooth surface under offsetting (which also does not

change).

Remark: It is easy to show that any PQ mesh having the offsetting property is a conical

mesh; that is, the offsetting property is a characterizing property of conical meshes.

Offsetting planes by a fixed distance along their normal vector is a simple instance of

a Laguerre transformation [28]. It is not difficult to see that general Laguerre transfor-

mations map conical meshes to conical meshes, whereas the property of a mesh being

circular is preserved under Möbius transformations [19].

The normals of a conical mesh.

Starting from a planar mesh with quads Qi,j , we construct a mesh in the unit sphere

whose vertices nij are the unit normal vectors of Qij . It is called the spherical image of

the original PQ mesh. For conical meshes, the spherical image has special properties:

As the four faces which meet in a vertex vk,l are tangent to a common cone Γk,l, the

normal vectors of these faces enclose the same angle with the cone’s axis. Thus these

four normal vectors lie in a circle contained in the unit sphere; the spherical center of

this circle gives the unit direction vector of Gk,l. Thus the spherical image of a conical

mesh is a circular mesh. This property is a discrete analogue to the well known fact that

the spherical image of the network of principal curvature lines is an orthogonal curve

network on the sphere.

Support structures of conical meshes.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 110

(a) (b)

Figure 6.12: A conical mesh discretizes the network of principal curvature lines. (a)
A conical mesh has conical offset meshes and a discretely orthogonal support structure
connecting the offsets. (b) Cone axes of neighboring vertices intersect in the discrete
principal curvature centers. Connecting these axes leads to discrete row and column

developables orthogonal to the mesh.

Figure. 6.10b illustrates two neighboring vertices vi,j and vi+1,j of a conical mesh. There

are two faces Qi,j and Qi,j−1 containing both vertices. These two faces are tangent to

both cones Γi,j and Γi+1,j . It follows that their axes Gi,j and Gi+1,j lie in the bisector

plane of the oriented faces Qi,j and Qi,j−1. The important fact derived here is that

neighboring axes (discrete surface normals) are co-planar, and they are contained in a

plane orthogonal to the mesh in a discrete sense.

It follows that an edge of the mesh, the discrete normals at its endpoints, and the

corresponding edge of any offset mesh, lie on a common plane. This property can be

used to build ‘orthogonal’ support structures as shown in Figures 6.1, 6.12 and 6.15,

which are important for the construction of freeform glass structures based on conical

meshes. Co-planarity of axes Gi,j and Gi,j+1 implies:

Geometry Fact 2. Successive discrete normals of a conical mesh along a row or column

are co-planar and therefore form a discrete developable surface (see Figure. 6.12).

Recall that the surface normals of a smooth surface along a curve constitute a developable

surface if and only if that curve is a principal curvature line. Fact No. 2 is a discrete

analogue of this classical result, and shows the following important property:

Geometry Fact 3. If a subdivision process, which preserves the conical property, refines

a conical mesh and in the limit produces a curve network on a smooth surface, then this

limit curve network is the network of principal curvature lines.

Focal surfaces with conical meshes.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 111

In a conical mesh, neighboring axes (discrete surface normals) in a row intersect, and so

do neighboring axes in a column. These intersection points are discrete row and column

curvature centers, which define, in general, a two-sheet discrete focal surface. It is easy

to see that the two quad meshes defined by the row centers and the column centers are

actually PQ meshes, and that singularities of discrete offsets occur at these two discrete

focal sheets. This is analogous to the smooth case [110].

Remark: We might ask if there are meshes which are both circular and conical. The

answer is in the affirmative, and it is not difficult to construct some. Interesting examples

of conical meshes of constant cone opening angle, which are at the same time circular

of constant circle radius, are derived from the discrete surfaces of constant negative

Gaussian curvature of [156]. One of them is shown in Figure. 6.12. However, meshes

with both properties may be too inflexible to be useful for modeling and approximation.

6.5 Computing Conical Meshes

We would like to approximate a surface Φ, which is given in any representation, by a

conical (or circular) mesh. Since both types of meshes converge to principal curvature

lines under refinement, it is a good choice to use a quad mesh extracted from principal

curvature lines (e.g., the meshes from [3]) as input for an optimization algorithm which

achieves the conical or circular property by perturbing the vertices as little as possible.

Robust computation of principal curves.

For computing principal curves, we employ a method different from previous approaches

[34, 35]. In view of the desired average size of faces in a principal mesh, we find it

appropriate to use as input robust principal curves on a given scale r (Figure. 6.13),

which are computed as follows. The procedure analyzes neighborhoods of points p of the

given surface Φ. We choose a kernel radius r, which defines the scale on which we would

like to work. The domain of space which, locally around p, lies to one side of the surface

is denoted by D. For each point p ∈ Φ we perform a principal component analysis (PCA)

of the set N r(p) = Br(p)∩D, where Br(p) is a ball of radius r centered in p. This means

that we compute the barycenter sr ofN r and the eigenvectors tr1, t
r
2, t

r
3 and corresponding

eigenvalues λr1 ≤ λr2 ≤ λr3 of the covariance matrix J :=
∫
Nr(x − sr) · (x − sr)Tdx. In

the limit r → 0, tr3 converges to the surface normal at p, and tr1, t
r
2 converge to the

principal directions. What we actually compute is a kind of average of these geometric

characteristics over a small neighborhood of p. Most importantly, directions tr1, t
r
2 are

more robust against noise and minor perturbations than those of classical differential

geometry or than those in [34], which are computed via PCA on the surface patch

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 112

Figure 6.13: Principal curves computed with different kernel radii.

neighborhood Br(p)∩Φ. For proofs and details on efficient implementation we refer to

[118].

The directions tr1, t
r
2 need not be tangent to the given surface at p. However, we can

still obtain meaningful principal directions at p if we just project them onto the tangent

plane at p. The direction of this projection shall be given by the third eigenvector

tr3, which estimates the surface normal. The projected directions do not have to be

orthogonal anymore, which is actually no loss and rather enhances stability when we

now integrate these two vector fields to obtain principal curves at the chosen scale r (see

Figure. 6.13). Our algorithm for vector field integration and quad mesh extraction is

based on ideas in [3, 43, 92].

Conical and circular optimization.

It is not difficult to modify the PQ perturbation algorithm from Section. 6.2.2 so that it

produces conical meshes. For perturbation into a conical mesh, we keep the constraints

of (6.1) and, according to Geometry Fact No. 1, for each vertex add the constraint

ω1
i,j + ω3

i,j − ω2
i,j − ω4

i,j = 0. (6.6)

The perturbation algorithm for computing a circular mesh is similar. A quad is planar,

convex, and has a circumcircle, if and only if the four angles enclosed by its four edges

have the property

φ1
i,j + φ3

i,j − π = 0, φ2
i,j + φ4

i,j − π = 0. (6.7)

We therefore replace the planarity constraint φ1
i,j+. . .+φ

4
i,j−2π = 0 in Equation. (6.1) by

the two constraints in (6.7). The modifications of the penalty method proceed along the

same lines. We do not enforce the conical condition for vertices of valence greater than

four, as in architectural applications such vertices are expected to get special treatment

anyway. We could however easily make such a vertex conical by imposing the conical

condition for any four faces adjacent to the vertex. Similarly, for circular meshes the

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 113

circular condition is not enforced for n-gons with n > 4, except for artificial 5-gons which

arise from quads at T junctions, where the original quad’s vertices are made cocircular.

Figure 6.14: The conical mesh in front was obtained by a combination of Catmull-
Clark subdivision and conical optimization from the control mesh behind. This conical

mesh is the basis for the glass structure in Figure. 6.1.

6.6 Results and Discussion

Developable surfaces. Our experiments show that the proposed subdivision ap-

proach to developable surface modeling is a powerful new tool (see Figures 6.9 and 6.16).

The elimination of the singular curve from the actually designed patch is simplified by

the multiscale approach inherent to subdivision: Planarization results in convex quads

and thus eliminates singularities from the designed patch at each subdivision level (Fig-

ure. 6.16). This multiscale elimination of the singular curve appears to be more efficient

than the methods known in the literature [115].

The PQ perturbation method described in Section 6.2.2 makes use of a reference surface.

If only a coarse PQ strip is available as a control structure for a smooth developable, such

a reference surface may be generated by applying the unperturbed subdivision rule to the

strip. Numerical evidence for the C2 smoothness of the perturbed cubic Lane-Riesenfeld

rule is furnished by the apparent smoothness of reflection lines in Figure. 6.9.

Conical and circular meshes.

The combination of subdivision and conical/circular perturbation produces high quality

meshes suitable for aesthetic design (see Figures 6.1, 6.14, and 6.15). Without subdivi-

sion, it is essential that perturbation which aims at principal meshes (circular or conical)

is applied to a mesh which is not too far away from a principal mesh. This is achieved by

deriving a mesh from principal curves (cf. Figure. 6.17). Otherwise, we either get large

deformations, or – if the surface is subject to further constraints such as fixed points

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 114

Figure 6.15: Design studies with conical meshes and their offset meshes produced by
subdivision and conical perturbation. The figure shows a wide-angle perspective of the

interior (upper), an exterior view (lower left), and an offset detail (lower right).

or closeness to a reference surface – we may obtain self-intersections, creases, and other

undesirable effects.

Efficiency.

The performance of our non-optimized PQ perturbation code depends not only on the

size of the input data, but also on the geometry and the nature of nearness constraints.

To give a few numbers, on a 2 GHz PC we experienced computation times of 0.08

(penalty) and 0.75 seconds (sequential quadratic programming) for PQ perturbation

applied to the trefoil knot with 336 faces in Figure. 6.9. Thus interactive modeling of

developable surfaces is easily possible. Total mesh computation time for Figure. 6.15

was 13 seconds, of which 80% was for 4 iterations of conical perturbation (penalty)

at the finest subdivision level with 5951 vertices. There is still room for improvement

when processing large meshes. The number of iterations can be as high as 20–50 for

the SQP method with a closeness term present. Surface approximation by conical and

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 115

circular meshes would certainly benefit from even better initial meshes, but this aspect

of quad-dominant remeshing is not a focus of the current work.

Convergence. It should be mentioned that there are meshes where PQ perturbation

fails because of topological obstructions. On the other hand we did not encounter

problems with meshes based on principal curves, and PQ perturbation is capable of

large deformations when that is necessary for achieving planarity.

Figure 6.16: Design studies with developable surfaces. Two of four developable
strips in the top figure show control structures, and the other two show the result of

subdivision together with singular curves.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 116

6.7 Conclusion and Future Work

We have shown how to construct and approximate surfaces with meshes composed of

planar quadrilaterals. To our knowledge, approximation with conical, circular, or even

just PQ meshes has not been treated before. Combining an optimization algorithm for

the computation of these PQ meshes with quad-based subdivision algorithms results in

a powerful modeling tool. It adapts subdivision for applications in architecture and also

provides a new way of modeling developable surfaces. In particular, we have introduced

and studied conical meshes, which discretize the network of principal curvature lines.

They are well suited for designing free-form glass structures in architecture, and provide

a simple and natural offsetting operation and the construction of a support structure

from discrete surface normals.

Claim: the presented material of this chapter has been published in [83].

Figure 6.17: Circular mesh generated by optimizing a mesh generated from principal
curves (top right).

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 117

6.8 Appendix: An Angle Criterion for Conical Mesh Ver-

tices

Introduction

The concept of conical meshes was introduced in preceding sections, thus laying the

foundation for significant new research in the geometry of freeform designs realized as

steel/glass constructions (see Chapter 6 and the textbook [119]). This section deals with

an important detail, namely the proof that the angle-based condition which characterizes

conical meshes (Theorem 6.1 below), is indeed true in all cases.

6.8.1 Conical vertices

In a mesh with planar faces, each face is equipped with a unit normal vector. These

normal vectors can be consistently oriented only if the mesh surface is orientable, but

anyway a consistent orientation is possible for the faces adjacent to a fixed vertex v. A

mesh vertex is said to be conical if the oriented planes adjacent to v are tangent to a

common oriented cone of revolution. The axis of this cone can be regarded as a discrete

surface normal at the vertex v.

Consider a vertex v of valence 4 as shown in Figure. 6.18. Let Li be the edges incident

with v, i = 1, 2, 3, 4. Let ωi denote the unsigned angle formed by Li and Li+1 (indices

mod 4), i = 1, 2, 3, 4. We assume that no face is degenerate, i.e., any two consecutive

edges are not parallel, and ωi > 0. The main result of this note is the following geometric

fact.

Theorem 6.1. A vertex v of valence 4 is conical if and only if the sums of opposite

angles are equal, i.e., ω1 + ω3 = ω2 + ω4.

Before giving the proof of Theorem 6.1, as preparation, we shall first present several

results concerning the conical property, the existence of offset meshes of a mesh, and

spherical quadrilaterals which have an incircle.

A mesh with planar faces usually does not have an offset mesh consisting of planar

faces which are at constance distance from the original ones. That is because planes

intersecting in a common point in general lose this property when each of them is moved

by a fixed distance. The following result shows that the existence of an offset mesh is

equivalent to the property that all vertices of the mesh are conical.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 118

Γ

G

R1

L1

R2

L2 R3

L3

R4

L4

ω1

ω2

ω3

ω4

Figure 6.18: Conical vertex of valence four. The faces touch the common cone Γ with
axis G along rulings R1, R2, R3, R4, and have interior angles ω1, ω2, ω3, ω4.

Theorem 6.2. Suppose that planes ε1, . . . , εk, k ≥ 4, with unit normal vectors n1, . . . ,nk
contain the faces of a mesh which are incident with a common vertex v. Translating

each plane εi in the direction of ni by a fixed distance d 6= 0 yields its offset plane εdi .

Then the following statements are equivalent:

1. The offset planes εdi have a point in common for some d 6= 0;

2. The offset planes εdi have a point in common for all d;

3. The planes ε1, . . . , εk are tangent to a common cone of revolution, including the plane

as limit case (the limit case of a straight line does not occur).

4. The normal vectors n1, . . . ,nk, regarded as points on the unit sphere S2, satisfy a

linear equation 〈ni,x0〉 = d, for some x0 6= 0 (the case d = 0 does not occur).

Proof. We first show the equivalence of statements 3 and 4. Note that the oriented

planes εi are tangent to a common oriented cone of revolution (including the limit cases

of line and plane) if and only if the unit normal vectors ni lie on a circle contained in

the unit sphere S2, including the limit case of zero radius. This happens if and only if

they satisfy a linear equation 〈ni,x0〉 = d for some x0 6= 0.

The case d = 0 is a limit case where the cone degenerates into a line, and the circle in

question is a great circle. This would imply that all the edges of the mesh emanating

from the vertex are parallel, which cannot happen. Therefore, the case of d = 0 does

not occur.

We are now going to show 1 ⇐⇒ 4. We choose a coordinate system such that v = 0.

The equation of the plane εi is x ∈ εi ⇐⇒ 〈ni,x〉 = 0, where ni is the oriented unit

normal vector. The offset plane εdi has the equation 〈ni,x〉 = d. Clearly, the k planes

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 119

u4

u3u2

u1

p4

p3

p2

p1

e1

e2

e3

e4

αi = |ei|

u′
4

u3u2

u1

p4

p3

p2

p1

u4

e′
1 = u1u

′
4
e1 = u1u4

e2

e3

e4

e′
4

αi = |ei|
α′

i = |e′
i|

Figure 6.19: (a) A convex spherical quad having an incircle. This schematic illus-
tration shows great circles as straight lines. (b) A convex spherical quad satisfying the

angle criterion.

εdi have a common point x0 if and only if the k normal vectors ni satisfies the equation

〈n,x0〉 = d. Assuming 1, d 6= 0 implies x 6= 0, so 4 follows. Conversely, 4 implies that

x0 ∈ εdi for all i. For all λ 6= 0, the equations 〈ni, λx0〉 = λd are equivalent. This shows

that 1⇐⇒ 2.

6.8.2 Convex spherical quadrilaterals

Let S be a sphere centered at a mesh vertex v of valence 4. Then the four faces incident

with v cut out four circular arcs on S which form a spherical quadrilateral Q(v). We

choose units such that S is the unit sphere. Clearly, the vertex v is convex if and only

if Q(v) is a convex spherical quadrilateral. In this connection, the next result relates to

the special case of Theorem 6.1 where the vertex under consideration is convex.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 120

Theorem 6.3. Suppose that a spherical convex quadrilateral with consecutive sides

e1, . . . , e4 has an incircle. Let αi be the length of the side ei. Then α1 + α3 = α2 + α4.

Conversely, a convex spherical quadrilateral with the property α1 +α3 = α2 +α4 has an

incircle.

According to p. 1038 of [159], the first part of Theorem 6.3 together with its dual version

(i.e., a convex spherical quadrilateral has a circumcircle if and only if the two sums of

opposite angles are equal) is due to Anders Johan Lexell [81], and the converse is due

to M. J. B. Durrande [51]. However, we found it difficult to locate recent references,

and so for the sake of completeness we give a proof below. As the proof of Theorem 6.3

does not refer to properties of the sphere which are different from those of the Euclidean

plane, this result is also true in Euclidean geometry, as well known. For brevity, we will

often use quad for quadrilateral.

Proof. We begin with a convex quad that has an incircle. Suppose that the incircle

touches the four sides ei at the points pi ∈ ei, as shown in Figure. 6.19a. Let ui denote

the vertex which is the intersection of the sides ei and ei+1 (mod 4). Let ab denote the

spherical distance between two points a and b, which is the angle of the smallest arc of

a great circle on S2 connecting a and b.

Because the two sides incident with a vertex are tangents of the same incircle, we have

u1p1 = u1p2, u2p2 = u2p3, u3p3 = u3p4, u4p4 = u4p1.

It follows that

α1 + α3 = u1p1 + u4p1 + u2p3 + u3p3

= u1p2 + u4p4 + u2p2 + u3p4 = α2 + α4.

Conversely, suppose that

α1 + α2 = α3 + α4. (6.8)

We shall prove by contradiction that the quad Q : u1u2u3u4 under consideration has

an incircle. Assume that Q does not have an incircle. Consider the family of the circles

that are contained in the convex quad Q and tangent to e2 and e3. Obviously this

family either contains a circle, denoted by C, which is tangent to e1 but not e4, or a

circle tangent to e4 but not e1. Without loss of generality, suppose that the former case

occurs (see Figure. 6.19b).

Let u′4 be the unique point on e1 between p1 and u4 such that the side e′4 = u3u′4 is

tangent to the circle C at p4. Then, by the first part of the proof, the convex quad

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 121

Q′ : u1u2u3u′4 satisfies the angle criterion, i.e.,

α′1 + α2 = α3 + α′4, (6.9)

where α′1 = u1u′4 and α′4 = u3u′4. Subtracting Equation. (6.9) from Equation. (6.8)

yields

α1 − α′1 = α4 − α′4.

It follows that

α4 = α′4 + α1 − α′1 = α′4 + u4u′4.

On the other hand, by the triangle inequality, we have

α4 < α′4 + u4u′4.

This is a contradiction, implying that the quadrilateral Q has an incircle. This completes

the proof.

6.8.3 General spherical quadrilaterals

We consider in this section general conical vertices of valence 4, i.e., vertices incident

with four planar faces. There are three types of mesh vertices of valence 4, as defined

below.

Definition 6.4. Consider a mesh vertex v of valence 4 and its associated quadrilateral

Q(v).

1. v is an elliptic vertex if the vertices of Q(v) are contained in a hemisphere, and no

vertex is contained in the spherical triangle formed by the other three vertices (note

that the interior of a spherical triangle is naturally defined once we restrict ourselves

to a hemisphere).

2. v is a parabolic vertex if it is not elliptic but the vertices of Q(v) are still contained

in a hemisphere.

3. v is a hyperbolic vertex if the four vertices ofQ(v) are not contained in any hemisphere.

Examples of these three types are shown in Figure. 6.20. Note that Q(v) is convex if

and only if v is elliptic.

The four planar faces incident with v have consistent normal vectors, which give rise to

four oriented planes with the same normal vectors. These planes intersect the sphere S

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 122

v

Q(v)

v

Q(v)

v
Q(v)

Figure 6.20: From left: elliptic(upper left), parabolic(upper right), and hyperbolic
(lower) vertices, and their associated spherical quadrilaterals Q(v). The vertex v is the

center of the sphere.

in four oriented great circles, denoted by Ci, i = 1, 2, 3, 4. These four circles cut each

other into a number of oriented circular arcs. The two sides of each arc are distinguished

as the outside and the inside, as indicated by the orientation of the plane containing the

arc.

Definition 6.5. A quadrilateral with sides e1, . . . , e4 contained in the oriented great

circles C1, . . . , C4 is admissible if the orientations of the four sides are consistent. This

means the following: The quadrilateral decomposes the unit sphere into two connected

components. Then it is required that the normal vectors of the four oriented planes

containing to C1, . . . , C4, when positioned along the sides e1, . . . , e4, point consistently

towards one of these two components.

Figure 6.21 shows some of admissible spherical quads. Here the sphere S is mapped

onto the plane via stereographic projection, which maps the four oriented great circles

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 123

C1

C2

C3

C4

u1

u2

u3

u4 C1

C2

C3

C4

u1

u2

u3

u4

C1

C2

C3

C4

u1

u2

u3

u4 C1

C2

C3

C4

u1

u2

u3

u4

Figure 6.21: Stereographic images of four oriented great circles on the unit sphere.
These four oriented circles correspond to four oriented planes incident with a vertex
v. The four figures show 4 of the total 12 admissible quads. Circle orientations are

indicated by hatched boundaries.

on S to four oriented circles in the plane, indicated by hatched boundaries. The center

of projection is chosen not to be on any of the four great circles.

By saying that an admissible spherical quad has an incircle, we mean that the four

oriented planes containing the four sides of the quad are tangent to a common oriented

cone. Then the following is obvious: The vertex in question is conical ⇐⇒ the four

oriented face planes are tangent to an oriented cone ⇐⇒ the oriented great circles

are tangent to an oriented circle ⇐⇒ the convex ones among the admissible quads

have an incircle ⇐⇒ the convex admissible quads satisfy the angle criterion. The last

equivalence in this statement follows from Theorem 6.3.

The next theorem states that any admissible spherical quad has an incircle if and only

if it satisfies the angle criterion.

Theorem 6.6. For four oriented great circles C1, C2, C3, C4, in the unit sphere there

are in total 12 admissible quadrilaterals, including reflections in the center of the unit

sphere. If the four oriented planes which carry C1, . . . , C4 are tangent to a common

oriented cone, then all these 12 quads satisfy the angle criterion, i.e.,

ω1 + ω3 = ω2 + ω4,

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 124

u1

u4

u3

u2

u6u5

C1
C2

C3C4

Figure 6.22: Converting an elliptic configuration Qe : u1u2u3u4 into a parabolic
configuration Q1,p : u1u6u3u5.

where ωi is the unsigned length of the i-th side of an admissible quad. Also the reverse

implication is true: If any of the 12 admissible quads satisfies the angle criterion, the

four oriented planes are tangent to a common oriented cone.

Proof. The four circles Ci have in total 12 pairwise intersection points, since 2 ·
(

4
2

)
=

2 · 6 = 12. Pick one of these 12 intersection points. Without loss of generality, suppose

that this point is u4 ∈ C1 ∩ C4. Now we count how many admissible quad contain u4.

In view of the assumption of consistent orientations, there are two ways to choose the

arcs of C1 and C4 which start at u4 and are part of an admissible quad. For each of

these choices, we have either a quad with sides traversing the four circles in the order

C1C2C3C4 or in the order C1C3C2C4 (see Figure. 6.21). Thus, there are in total 4

quads passing through u4. Since there are 12 pairwise intersection points among the

four circles, we have counted 12 · 4 = 48 admissible quads. Since each quad has four

vertices, it is counted 4 times. So the number of distinct admissible quads is 48/4 = 12.

This proves the first part of the theorem.

Obviously, there is a convex quad among the 12 admissible ones; in fact, there are two,

which are reflections of each other. We are going to show that all admissible quads can

be obtained from a convex admissible quad Qe by operations which preserve the angle

balance in both directions.

Let Qe be a convex admissible quad with vertices ui, i = 1, 2, 3, 4. Suppose that the sides

ei of Qe are on the circles C1, C2, C3, C4 (in this order) and that ui ∈ Ci ∩Ci+1 (indices

modulo 4). Then a parabolic admissible quad Q1,p : u1u6u3u5 can be derived from Qe

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 125

u1

u4

u3

u2

u6

u5

p1

p2

p3

p4
ω3 = u6u3

ω2 = u1u6

ω4 = u3u5

ω1 = u5u1

Figure 6.23: An admissible parabolic quad having an incircle.

by traversing the circles in the order C1, C3, C4, C2, thereby making u1 a concave vertex

(see Figure. 6.22). Similarly, we can derive three other admissible parabolic quads Q2,p,

Q3,p, and Q4,p. By reflecting the Qi,p in the center of the sphere, i = 1, 2, 3, 4, we obtain

in total 8 parabolic quads.

Now we derive hyperbolic quads from Qe. We replace the vertices u1 and u3 of Qe
by their diametrically opposite points u∗1 and u∗3 and arrive at the admissible quad

Qh : u∗1u2u∗3u4 of hyperbolic type. If we flip u2 and u4 instead, we get the quad

Q∗h : u1u∗2u3u∗4, which is the reflection of Qh. In this way, 2 hyperbolic quads are

derived.

Together with Qe and its reflection Q∗e, we have obtained 12 admissible quads, which,

in view of the total number 12 shown earlier, already exhaust the set of all admissible

quads. Hence, we conclude that any admissible quad can be obtained from a convex

admissible quad with the above operations.

Next we are going to show that, for any of the nonconvex admissible quads obtained

above, the angle criterion characterizes the property that C1, . . . , C4 are tangent to a

common oriented circle. First consider the case of parabolic admissible quads, using the

quad Q1,p : u1u6u3u5 in Figure. 6.23 for illustration. Denote the lengths of the sides

of Q1,p by ω1 = u5u1, ω2 = u1u6, ω3 = u6u3 and ω4 = u3u5. First suppose that an

incircle exists, which means that the convex quad Qe : u1u2u3u4 has an incircle. Using

the fact that the two tangents from a vertex to a circle have equal lengths, we have

ω1 + ω3 = u5u1 + u3u6 = p4u5 − p4u1 + u3p3 + p3u6 = p2u5 − p1u1 + u3p2 + p1u6

= p1u6 − p1u1 + u3p2 + p2u5 = u1u6 + u3u5 = ω2 + ω4.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 126

u′
1

u4

u3

u′
2

u6

u5

p1

p2

p3

p4

u2

u1

e1

e2

e3 = u2u3

e4 = u3u4

ω2 = u1u6 ω′
2 = u′

1u6

ω3 = u6u3

ω4 = u3u5

ω1 = u5u1

ω′
1 = u5u′

1

Figure 6.24: A parabolic admissible quad satisfying the angle criterion.

It follows that Q1,p satisfies the angle criterion.

Conversely, suppose that Q1,p satisfies the angle criterion, i.e.,

ω1 + ω3 = ω2 + ω4. (6.10)

We shall prove by contradiction that Q1,p has an incircle. Assume otherwise, i.e., Qe has

no incircle. Similar to the proof of Theorem 6.3, consider the family of the circles that

are contained in the convex quad Qe and tangent to e3 = u2u3 and e4 = u3u4. Then,

there is a circle C in this family that is either tangent to e1 but not e2 or tangent to e2

but not e1. Without loss of generality, we suppose the former to be the case, as shown

in Figure. 6.24.

Let u′1 be the unique point on the side u1p1 such that the great circle containing the

side u′1u5 is tangent to the circle C inside the convex quad Qe. Then the new convex

quad Q′e : u′1u2u3u4 has an incircle. By the preceding argument, the new parabolic

quad Q′1,p : u′1u6u3u5 satisfies the angle criterion, that is,

ω′1 + ω3 = ω′2 + ω4, (6.11)

where ω′1 = u5u′1 and ω′2 = u′1u6. Subtracting Eq. (6.11) from Eq. (6.10) yields

ω1 − ω′1 = ω2 − ω′2.

It follows that

ω′1 = ω1 + ω′2 − ω2 = ω1 + u′1u1.

Chapter 6. Geometric Modeling with Conical Meshes and Developable Surfaces 127

On the other hand, by the triangle inequality, we have

ω′1 < ω1 + u′1u1.

This is a contradiction, implying that Q1,p has an incircle. It follows that the angle

criterion characterizes the existence of an incircle also for parabolic quads.

Next we consider the case of hyperbolic quads. We are going to show thatQh : u∗1u2u∗3u4,

which is constructed from Qe, has an incircle if and only if Qh satisfies the angle criterion.

This is easier than in the parabolic case, because the side lengths of Qh are given by

π−αi, where the αi are the side lengths of Qe. Hence, Qh satisfies the angle criterion if

and only if Qe does, i.e., if and only if an incircle exists. This completes the proof.

Remark 1: It is possible that a non-admissible quad also enjoys the angle balance,

because it might be admissible for a different assignment of orientations, and so the four

corresponding planes are tangent to a different oriented cone. This, however, does not

diminish the value of Theorem 6.6 for applications if we consider admissible quads only.

This is the case if the quads under consideration come from a consistently oriented quad

mesh.

Remark 2: In a quad mesh with planar faces which approximates a smooth surface and

where almost all vertices have valence four, vertices are typically elliptic or hyperbolic,

whereas parabolic vertices occur not as often. This is similar to the distribution of

parabolic points in smooth surfaces. The fact that most of the 12 admissible quads

discussed in Theorem 6.6 are parabolic does not contradict this behavior.

Proof of Theorem 6.1

Proof. The planar faces incident with a mesh vertex v of valence 4 are consistently

oriented such that the spherical quad Q(v) is admissible in the sense of Definition 6.5.

The side lengths of the spherical quad Q(v) are equal to the interior angles of the faces

mentioned in the statement of Theorem 6.1. Hence, the proof follows from Theorem

6.6.

Claim: the presented material in this section has been published in [152].

Chapter 7

Geometry of Multi-layer Freeform

Structures for Architecture

7.1 Introduction

Freeform shapes in architecture is an area of great engineering challenges and novel de-

sign ideas. Obviously the design process, which involves shape, feasible segmentation

into discrete parts, functionality, materials, statics, and cost, at every stage benefits from

a complete knowledge of the complex interrelations between geometry requirements and

available degrees of freedom. Triangle meshes – the most basic, convenient, and struc-

turally stable way of representing a smooth shape in a discrete way – do not support

desirable properties of meshes relevant to building construction (most importantly, “tor-

sion-free” nodes). Alternatives, namely quad-dominant and hexagonal meshes tend to

have less weight, and can be constructed with geometrically optimized nodes and beams.

However, the geometry of such meshes is more difficult. Especially challenging are aes-

thetic layout of edges and the geometric constraints of planar faces and optimized nodes.

Only recently, researchers have become interested in the geometric basics of single-

and multilayer freeform structures which are not based on triangle meshes. Existing

literature has been motivated by problems in the fabrication of steel/glass and other

structures and mostly aims at the realizations of freeform shapes by meshes with planar

faces [39, 56, 83, 133]. The latter paper (cf. Chapter 6) introduced conical meshes which

have planar faces and possess offset meshes at constant face-face distance from the base

mesh. They can serve as the basis of multi-layer constructions, and so for the first time

the problem of multilayered realization of a freeform surface by means of planar parts

was solved in principle.

129

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 130

Figure 7.1: This architectural free form structure – built of beams of constant height
meeting in optimized nodes and covered with planar glass facets – was designed using
the theory and algorithms presented in this chapter. Our method also allows for the
construction of secondary parallel offsets at a variable distance, here physically realized
as a structure designed to cast shadows which is optimized to reduce heat load for

particular sun positions.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 131

Until now the wealth of interesting geometry relevant to the construction of freeform

structures in architecture has been explored only to a small extent. It is the aim of

our work to show how the local structure of single- and multi-layer constructions can

be analyzed with mesh parallelism as the main tool. This concept allows us to encode

the existence of node axes and offsets in a discrete Gauss image, and to define discrete

curvatures in a natural way. Optimization in the linear space of meshes parallel to a given

mesh yields a modeling tool. A particularly important and interesting type of meshes are

those possessing edge offsets. We show how mesh parallelism establishes a connection

between meshes with edge offsets and Koebe polyhedra. Thus the research presented

here is situated at the meeting point of discrete differential geometry, modeling, geometry

processing, and architectural design.

Previous work in discrete differential geometry.

Most of the work relevant to the present study concerns quadrilateral meshes with pla-

nar faces, which discretize so-called conjugate curve networks on surfaces [126]. They

are a basic concept in the integrable system viewpoint of discrete differential geometry

[19]. Both the circular meshes and the conical meshes are special cases which possess

particularly nice geometric properties, and which correspond to those conjugate curve

networks which are also orthogonal, i.e., the principal curvature lines. For convergence

of such meshes to the network of principal curvature lines, see [19]. The fact that prin-

cipal curvature lines are a concept of Lie sphere geometry has a discrete manifestation

in the unified treatment of circular and conical meshes as principal meshes of Lie sphere

geometry [20]. Elementary relations between circular and conical meshes, and meshes

which enjoy both properties are discussed by Pottmann and Wallner [114]. Special cases

of the parallel meshes which are the topic of our work have been considered by [126].

Our work on curvature extends results of Schief [128], who defined a mean and Gaussian

curvature for circular meshes via surface areas of discrete offset surfaces. That method

apparently has first been applied to simplicial surfaces by Nishikawa et al. [98] in a

different context. Another classical definition of the mean curvature through variation

of surface area of simplicial surfaces has been investigated by Polthier [108]. Discrete

minimal surfaces realized as circular and conical meshes are the topic of several con-

tributions (e.g. [17, 22]). Attempts to construct discrete minimal surfaces with planar

quad meshes have been made by [109]. The discrete minimal surfaces of [22] are partic-

ularly interesting because they provide a class of polyhedral surfaces with the edge offset

property . It turns out in Section 7.3.2 that the edge offset property is closely related to

results on orthogonal circle patterns [18, 134].

Previous work in geometry processing.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 132

mi

m′i

mj

m′j

M

M′

Figure 7.2: Multi-layer constructions based on the geometric support structure de-
fined by two parallel meshes M, M′ at approximately constant distance. On the left,
the lower layer of the glass roof is suspended from the upper layer which has a struc-
tural function. The right hand image shows a rudimentary construction of a glass

facade where the closed space between layers has an insulating function.

Only some of the papers mentioned above address the computation of the meshes they

deal with [18, 22, 83]. The latter paper (cf. Chapter 6) demonstrates how to design

meshes with planar faces, circular meshes, and conical meshes by subdivision and opti-

mization, and also how to approximate a given shape by a circular or conical mesh. As

input for such mesh optimization algorithms any mesh aligned along a network of prin-

cipal curvature lines may be used (see e.g. [3, 142]). Approximation of smooth surfaces

by meshes with planar faces, without a focus on support structures and multilayer con-

structions can be achieved by variational shape approximation [36]. Cutler and Whiting

[39] modified this method with regard to aesthetics and architectural design. More gen-

erally, various research projects on geometry for architecture in general are promoted

by the Smart Geometry group [137].

Meshes whose faces are mostly planar 5-gons or 6-gons have certain desirable properties,

but such meshes have received considerably less attention in the graphics community

than triangle meshes and quad meshes. Some notable exceptions are papers on refine-

ment processes by Akleman et al. [2], and on combined primal/dual subdivision [102].

However, they do not consider planarity of faces or other aspects relevant to building

construction.

7.2 Mesh Parallelism for Architecture

7.2.1 Motivation and introduction

Glass panels and multilayer metal sheets for roofing structures are planar as a rule, with

only a few exceptions. The reason for this is mostly the prohibitive cost of manufacturing

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 133

them otherwise. Obviously, every implementation of a freeform shape in terms of flat

primitives faces the problem of approximating the given surface by a mesh with planar

faces. If triangle meshes are employed, the geometry part of the solution of this problem

consists of choosing the vertices and deciding which vertices to connect by edges. If faces

can have more than three vertices, this approximation task is not so simple, because the

condition of planar faces is no longer fulfilled automatically. It should be mentioned that

also statics is simpler if we stay with triangle meshes. There are, however, the following

issues which make other solutions attractive:

• In a steel/glass or other construction based on a triangle mesh, typically six beams

meet in a node. This means a significantly higher node complexity compared to other

types of meshes (see Figure. 7.4, right).

• Experience shows that the per area cost of triangular glass panels is higher than that of

quadrilateral panels. This is mainly due to the fact that quadrilaterals fill their smallest

rectangular bounding boxes better than triangles do.

• Generally one aims at less steel, more glass, and less weight, which also suggests the

use of non-triangular faces.

• For the actual construction, torsion-free nodes are preferred. For this concept, see

Figure 7.4 and the text below. The geometric theory however tells us that for triangle

meshes in general torsion-free nodes do not exist.

• Apart from trivial cases, triangle meshes do not possess offsets at constant face-face or

edge-edge distance; neither is it possible to use triangle meshes as basis of a multilayer

construction where only the basic requirement of parallelity of layers is imposed.

This section shows how the concept of parallelism, which applies to meshes with planar

faces, can be used to gain a unified view of these issues, especially geometrically optimal

nodes and offset properties [26]. Consider two meshesM andM′ which are combinato-

rially equivalent, i.e., there is a 1-1 correspondence between vertices and edges. We call

the meshes M,M′ parallel, if corresponding edges are parallel (see Figure 7.3). Before

we consider parallel meshes from the mathematical viewpoint, we first describe some

geometric problems connected with discrete surfaces in architecture where this concept

occurs naturally.

Multilayer constructions.

Structures like those schematically depicted by Figure 7.2 include not only one mesh, but

several meshes, corresponding to the different layers of the construction. It is natural to

demand that meshes which correspond to different layers are parallel.

Geometrically optimal nodes.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 134

M

mi

M′

m′i

Figure 7.3: Meshes M,M′ with planar faces are parallel if they are combinatorially
equivalent, and corresponding edges are parallel.

In the actual realization of a polyhedral surface M as a steel/glass roof, planar glass

panels are held by prismatic beams following the edges ofM (see Figure. 7.4). A beam is

symmetric with respect to its central plane which passes through the edge corresponding

to the beam. A node corresponds to a vertex mi and connects incoming beams in a way

which supports the force flow imposed by the overall statics of the structure. Node

construction and manufacturing are greatly simplified if there is a node axis Ai, which

is contained in the central planes of incoming beams (see Figure 7.4, left). Figure 7.4,

right, shows the case of a welded node which does not have a node axis. Obviously the

handling and manufacturing of such ‘nodes with torsion’ is more complicated than the

case with a node axis. Geometrically, lines Ai passing through the vertices mi of a given

mesh are a collection of node axes, if and only if

mimj is an edge =⇒ node axes Ai, Aj are co-planar.

To avoid pathological cases, we forbid that node axes lie in edges.

The following simple but fundamental proposition establishes a property of a collection

of node axes associated with a mesh M. It relates node axes to an auxiliary mesh M′

which is parallel to the given mesh, and is illustrated by Figure. 7.4, left.

Proposition 7.1. If the meshes M, M′ with vertices mi, m′i (∀ i : mi 6= m′i) are

parallel, then the lines Ai = mi ∨m′i serve as node axes for the mesh M (provided no

line Ai contains an edge).

Conversely assume that a simply connected mesh M is equipped with node axes Ai pass-

ing through its vertices mi. Then there exists a mesh M′ parallel to M, such that Ai is

spanned by corresponding vertices mi,m′i.

Proof. This is shown in [120]. Part (i) is elementary. For part (ii) we start with a vertex

m′i0 ∈ Ai0 and construct further vertices of M′ by the requirement that corresponding

edges of M and M′ are parallel, and that m′i ∈ Ai for all i.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 135

Ai

mimimimimimimimimimimimimimimimimi
m′im′im′im′im′im′im′im′im′im′im′im′im′im′im′im′im′i

MMMMMMMMMMMMMMMMM
M′M′M′M′M′M′M′M′M′M′M′M′M′M′M′M′M′

Figure 7.4: Left: This figure shows nodes, supporting beams, and the underlying
geometric support structure of a steel/glass construction, based on a meshM (vertices
mi) and its parallel mesh M′ (vertices m′i). All beams are symmetric with respect to
their central plane (blue); at an optimized (torsion-free) node mi the central planes of
supporting beams pass through the node axis Ai = mi ∨m′i. Right: A node without

axis, with geometric torsion.

Geometric support structure.

There is a point of view which unifies the different cases where parallel meshes occur

– regardless of whether a parallel mesh is physically realized, or is only used in the

definition of node axes. This point of view is that we emphasize the construction elements

which connect different layers – physically present or not – and which are transverse to

the mesh M under consideration. In Figure 7.2, right, these construction elements

are the glass panels which connect the two parallel meshes M,M′. In Figure 7.4,

left, these construction elements are the beams. We shrink those elements until they

have zero width (this is schematically indicated in Figure. 7.4, left). They then become

planar quadrilaterals transverse to the meshM, passing through the edges ofM. Those

transverse quads which are adjacent to a node mi, have a common edge which lies in

the node axis Ai. Such a collection of quads is called a geometric support structure of

the mesh M (see Figures 7.1, 7.2, 7.4, 7.6, 7.13, and 7.14).

Obviously, a collection of node axes for M almost uniquely defines the quads of a geo-

metric support structure forM – the only degree of freedom left is the quad boundaries

opposite to the edges of M. By Proposition 7.1, any geometric support structure joins

the edges of M with the respective corresponding edges of a mesh M′ parallel to M.

Every node axis Ai joins corresponding vertices mi, m′i.

Specific problems

We are going to discuss meshes with certain geometric properties relevant to architectural

design, especially support structures. An important property of this kind is that a mesh

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 136

M

M′

M′′

M′′′= 25
90M+44

90M′+ 21
90M′′

Figure 7.5: The set P(M) of meshes parallel to a given meshM is a linear space and
can be explored by a linear blend of some of its elements.

possesses a support structure whose beams are of constant height – this is the class of

edge offset meshes defined later. Generally speaking, the more properties we require a

mesh to have, the fewer degrees of freedom are available. We therefore encounter the

following problems:

• The approximation problem. Is it possible to approximate a given shape by a mesh

contained in a specific class of meshes? For example, this is possible for the conical

quad meshes, as shown in Chapter 6, but not for the quad meshes with the edge offset

property. However we shall see that we can approximate arbitrary surfaces if we relax

the requirement of constant height a little bit.

• The design problem. How can we explore or even completely describe the set of meshes

with a specific geometric property? This question is especially important in cases where

the approximation problem is not solvable. For example, we will introduce some geo-

metric transformations which change shape but preserve the edge offset property.

7.2.2 Basics of mesh parallelism

Mesh parallelism and the spaces C(M) and P(M).

A mesh M is represented by the list (m1,mN) ∈ R3N of vertices and the mesh

combinatorics, i.e., the information which vertices belong to common edges and faces.

We use C(M) to denote the linear 3N -dimensional space of meshes combinatorially

equivalent toM. IfM′,M′′ have the same combinatorics, a linear combination λ′M′+
λ′′M′′ is defined vertex-wise; this operation corresponds to the linear combination of

vectors in R3N .

Meshes M,M′ are parallel, if M′ ∈ C(M) and corresponding edges are parallel (see

Figures 7.3 and 7.5). We use that definition only if the faces of M are planar. Clearly

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 137

then corresponding faces of M and M′ lie in parallel planes (parallelity of planes alone

is sufficient to guarantee parallelity of edges, if no pair of adjacent faces are co-planar).

We denote the set of meshes parallel to M by P(M). To avoid pathological cases we

require that the meshM which defines the space P(M) has only nonzero edges. Trivial

ways of producing meshes parallel to M are to translate and scale M. Since triangles

with parallel edges are scaled copies of each other, two parallel triangle meshes are scaled

copies of each other [120]. This is the reason why we do not consider triangle meshes.

Suppose M′,M′′ ∈ P(M). Then, for each edge mimj , the vectors m′i −m′j , m′′i −m′′j
are multiples of mi−mj . It follows that any expression (λ′m′i+λ′′m′′i)−(λ′m′j +λ′′m′′j)

is a multiple of mi − mj . This shows that the linear combination λ′M′ + λ′′M′′ is

also parallel to M, so P(M) is a linear subspace of C(M). The zero vector of both

P(M) and C(M) is the mesh o = 0 · M, all of whose vertices coincide with the origin

of the coordinate system. Linear blending between three meshes in the space P(M) is

illustrated by Figure 7.5.

The space P(M) does not only contain ‘nice’ meshes. We may see various undesirable

effects such as unevenly distributed faces, sharp edges of regression, or overlapping

regions. Nevertheless, it is both theoretically and practically useful to have the entire

space P(M) at our disposal. Even visually unpleasant meshes in P(M) will turn out

to be helpful in the computation of optimal beam layouts (see Figure. 7.14d).

Computing in the space of parallel meshes.

As P(M) is a linear space, it is important to determine a basis. We observe that a mesh

M′ ∈ C(M) is contained in P(M) if and only if

mimj is an edge =⇒ m′i −m′j = λij(mi −mj). (7.1)

We can therefore determine P(M) as the solution space of the system of equations

(m′i −m′j)× (mi −mj) = 0 for all edges mimj . (7.2)

A rough count of degrees of freedom (one d.o.f. per edge, two closure conditions per

face, 3 d.o.f. for the translations in space) shows that e.g. for open meshes we can expect

dimP(M) = # edges − 2 ×# faces + 3. The actual solution of (7.2) is done via SVD.

Thresholding of small singular values is supported by an a priori estimate for dimP(M).

Once a basis is available, the minimization of linear and quadratic functionals (e.g. a

fairness functional) under constraints (like fixed points) and linear side conditions (like

edge length inequalities) presents no problems.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 138

7.3 Offset Meshes

Meshes are offsets of each other, if they are parallel, and in addition their distance from

each other is constant throughout the mesh. This notion is similar to the concept of

smooth offset surfaces [91], but in contrast to the smooth case, for meshes there are

various different definitions of distance. Consequently, there are also various different

notions of offset mesh. Two of them, face offsets and edge offsets are relevant to problems

of architectural design of freeform surfaces.

For multilayer constructions (cf. Figure 7.2) it is natural to require that the distance of

corresponding faces is constant. Parallel meshes with this property (face offsets) are the

topic of Chapter 6.

Another type of offset occurs when we employ parallel meshes for the layout of beams

in a steel/glass construction based on a given mesh M. The beams are a physical

realization of a geometric support structure which connects two parallel meshesM and

M′. If the distance of corresponding edges in M and M′ is constant throughout the

Figure 7.6: This construction (a detail of Figure. 7.1) is based on an edge offset mesh
and has beams of constant height. In the positively curved areas, edges (red) of beams
with rectangular cross-section have an exact intersection at the nodes, which follows

from Prop. 7.3.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 7.7: This geometric support structure is defined by two parallel meshes which
are not of constant edge-edge distance. We nevertheless employ beams of constant
height to physically realize that support structure. The resulting misalignment is not
visible from the outside (a), hardly visible from the beams’ mid-sections lying in the
respective central planes (b), but is clearly visible from the inside (c). Still, nodes have

no torsion and symmetry planes of beams intersect in the node axis.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 139

mesh, then beams of constant height are perfectly aligned on both the upper (outer)

and the lower (inner) side of the construction, provided that the mesh is convex (see

Figure 7.6).

If, on the other hand, the distance of corresponding edges in M and M′ is not the

same throughout the mesh, then one could still use beams with the same cross-section

throughout the mesh, but these beams will not be aligned on both sides (see Figure 7.7).

Still, ifM andM′ are at almost constant edge-edge distance, a physical realization may

use beams of the same cross-section throughout the mesh, without too much misalign-

ment being visible. As exact distance requirements are sometimes hard or impossible

to fulfill, we consider offsets at an exactly constant distance (in this section) as well as

offsets at approximately constant distance (in Section 7.4).

7.3.1 Types of exact offset meshes

Recall that a meshM′ ∈ P(M) at constant distance fromM is an offset ofM. Different

ways to define the precise meaning of “dist(M,M′) = d” lead to different kinds of offsets:

• vertex offsets: The distance of corresponding vertices mi, m′i is independent of the

vertex and equals a constant d.

• edge offsets: The distance of corresponding parallel edges (actually, lines which carry

those edges) independent of the edge and equals d.

• face offsets: The distance of faces (actually, planes which carry faces) is independent

of the face and equals d.

Discrete Gauss images. If p is a point of a smooth surface and n is the unit normal

vector there, then p′ = p + dn would be a point of an offset surface at distance d. If

p,p′ are given, we can recover the unit normal vector by n = (p′ − p)/d. If M′ is an

offset mesh of M we can mimick this construction and define a discrete Gauss image

mesh S := (M′ −M)/d, whose vertices si = (m′i −mi)/d can be regarded as discrete

normal vectors.

Proposition 7.2. Consider a mesh M, its offset mesh M′ at distance d, and define

the Gauss image mesh S = (M′ −M)/d. Then the following is true:

1. M′ is a vertex offset of M ⇐⇒ the vertices of S are contained in the unit sphere

S2. If S is a quad mesh and no edges degenerate, then M has a vertex offset if

and only if M is a circular mesh, i.e., each face has a circumcircle.

2. M′ is an edge offset of M ⇐⇒ the edges of the Gauss image mesh S are tangent

to S2.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 140

3. M′ is a face offset of M ⇐⇒ the faces of the Gauss image mesh S are tangent

to S2. A mesh has a face offset if and only if it is conical, i.e., the faces around a

vertex are tangent to a cone of revolution.

So in all three cases we have the equivalence dist(M,M′) = d ⇐⇒ dist(S,o) = 1,

which means that the vertices, or the edges, or the faces of S are at distance 1 from the

origin.

Proof. The equivalence dist(M′,M) = d ⇐⇒ dist(S,o) = 1 is elementary. The

statements about circular and conical meshes are reviewed in [114].

This relation between a pair of offset meshes M,M′ and the Gauss image mesh S is

illustrated by Figure 7.8. Proposition 7.2 has an important consequence: If the mesh

M has an offset mesh at constant vertex/edge/face distance, then every mesh parallel

to M has this property. This is because the Gauss image mesh S ∈ P(M) can be

used to construct an offset not only forM, but for any further mesh in P(M). Another

observation will be important later: We can first construct a mesh whose vertices/edges/

faces are at distance 1 from the origin. Then any mesh M ∈ P(S) has offset meshes

M′ =M+ dS.

7.3.2 Meshes with edge offsets

We are interested in meshes which have edge offsets (EO meshes) because they can be

built with beams of constant height meeting at the nodes in a geometrically optimal way

(see Figure 7.6). Proposition 7.2 mentioned that a mesh M has an edge offset mesh,

S2

S

M′ =M+ dS

M

Figure 7.8: A mesh M with an edge offset mesh M′ at distance d has a parallel
mesh S = (M′ −M)/d whose edges are tangent to the unit sphere S2. The faces of S

intersect S2 in a circle packing, cf. Section 7.3.2.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 141

if there is a mesh S parallel to M whose edges are tangent to the unit sphere. The

following paragraphs deal with the interesting mathematical theory of EO meshes, with

a focus on the geometry of S.

Proposition 7.3. If a mesh M has an edge offset M′, then for each vertex mi of M,

the edges emanating from mi are contained in a cone of revolution Γi. The node axis

Ai spanned by corresponding vertices mi ∈M, m′i ∈M′ is the axis of the cone Γi.

Proof. The statement about cones is true for the mesh M if and only if it is true for at

least one mesh in P(M) which does not have zero edges (because corresponding edges

are parallel). It is thus sufficient to show it for the Gauss image mesh S = (M′−M)/d,

where d = dist(M,M′). According to Proposition 7.2, the edges of S are tangent to the

unit sphere S2 (see Figure 7.8 and especially Figure 7.9). Obviously, all lines emanating

from a vertex si which touch S2 lie in a cone of revolution Γ̃i, so the statement is true

for S. Consequently it is true for M. The axis of Γ̃i passes through the origin, so it is

parallel to the vector si. It follows that the axis Ai of the cone Γi associated with the

vertex mi contains the point m′i = mi + dsi.

SSSSSSSSSSSSSSSSS

eeeeeeeeeeeeeeeee

sisisisisisisisisisisisisisisisisi

sjsjsjsjsjsjsjsjsjsjsjsjsjsjsjsjsj

FkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFk

FlFlFlFlFlFlFlFlFlFlFlFlFlFlFlFlFl

tetetetetetetetetetetetetetetetete

csicsicsicsicsicsicsicsicsicsi
csi
csi
csi
csi
csi
csicsi

csjcsjcsjcsjcsjcsjcsjcsjcsjcsj
csj
csj
csj
csj
csj
csjcsj

cFk
cFkcFkcFkcFkcFkcFkcFk
cFk
cFk
cFk
cFk
cFk
cFk
cFk
cFkcFk

Γ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃iΓ̃i

sisisisisisisisisisisisisisisisisi

S2

Figure 7.9: A Koebe polyhedron and related circles and cones.

EO meshes and Koebe polyhedra.

A mesh S with planar faces whose edges e touch S2 in points te (a so-called Koebe

polyhedron) has very interesting geometry [18, 160]. Each face F intersects S2 in a circle

cF which touches the boundary edges of F from the inside (see Figures 7.8 and 7.9). For

any vertex si, the vertex cone Γ̃i touches the unit sphere in a circle csi . Obviously the

edge e has a point of tangency te with S2, and two circles of either type pass through te.

Circles of the same type touch each other, and circles of different types intersect at 90

degrees. The computation of such circle patterns via minimization of a convex function

is known [18] and even possible on-line [135]. Closed Koebe polyhedra are uniquely

determined by their combinatorics up to a Möbius transformation (i.e., a projective

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 142

M′

S S ′

MMMMMMMMMMMMMMMMM

Figure 7.10: Creation of the mesh M′ which Figure 7.1 is based on. This example
demonstrates that meshes with properties interesting from the mathematical viewpoint
can yield aesthetically pleasing results; and that a designer has access to additional
degrees of freedom by applying some nonstandard geometric transformations. Here we
start with the Koebe polyhedron S and construct the mesh M which is of constant
mean curvature with respect to S (the Gauss mapping σ :M→ S has an overfolding,
with the inflection circle onM corresponding to the apparent boundary of S). Applying
a Laguerre transformation results in the EO meshM′, which has the Gauss image mesh

S ′. This L-transform was found interactively.

mapping which transforms S2 into itself). For open polyhedra there is an additional

degree of freedom for each boundary vertex.

7.3.3 Designing with EO meshes

The edge offset property is rather restrictive. Quad-dominant meshes which have ver-

tex or face offsets (i.e., the circular and conical meshes), are capable of approximating

arbitrary shapes. This is no longer the case with EO meshes.

Computing EO meshes from Koebe polyhedra.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 143

We may use the following general procedure when designing a mesh M with the edge

offset property: First we determine the combinatorics of the mesh and compute a Koebe

polyhedron S with that combinatorics, using the procedure of [18]. The mesh M we

are looking for is then found within the space P(S), e.g. by optimization. An example

of this is shown by Figure 7.11, where S is a Koebe polyhedron with pentagonal faces

and M is found by minimizing the fairness functional fLaplacian defined by

fLaplacian(M) =
∑

vertices mi

(
mi −

1
deg(mi)

∑
mj∈star(mi)

mj

)2
, (7.3)

under appropriate sign constraints for the factors λij of Equation. (7.1) (see the fig-

ure caption for more details). Once an EO mesh is found, we may apply geometric

transformations to it – this is the topic of the next paragraph. It is obvious that these

methods are not useful for geometric modeling in the usual sense, but only for form

finding purposes.

Laguerre transformations of EO meshes.

From the various equivalent descriptions of Laguerre geometry [28], the following, which

employs the spheres of R3 as basic elements, is perhaps shortest: A sphere S with center

(m1,m2,m3) and signed radius r is identified with the point xS = (m1,m2,m3, r) ∈ R4.

We think of normal vectors of spheres pointing to the outside if and only if r > 0. Points

are spheres of zero radius. An L-transformation then has the form xS 7→ A · xS + a,

where a ∈ R4 and A is a 4× 4 matrix with ATJA = J and J = diag(1, 1, 1,−1). Every

Euclidean transform permutes the set of spheres and can be written as an L-transform.

Another simple example of an L-transform (A = I4 and a = (0, 0, 0, d)) is the offsetting

operation which increases the radius by the value d. It is well known that the set of

spheres tangent to an oriented cone of revolution is mapped by any L-transform α to a

set of the same type [28]. Thus, an oriented cone of revolution Γ becomes an entity of

Laguerre geometry: Take two spheres S1, S2 tangent to Γ and define α(Γ) to be tangent

to the spheres α(S1), α(S2). After these preparations we can state:

Proposition 7.4. An L-transformation maps an edge offset mesh M to another edge

offset mesh M′, if both are seen as the respective collection of vertex cones Γi, Γ′i ac-

cording to Proposition 7.3.

We use Proposition 7.4 for the modification of edge offset meshes. An example is fur-

nished by the mesh Figure 7.1 is based on; the transformation we use is illustrated by

Figure 7.10.

Possible shapes of EO meshes (quad and hex mesh cases).

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 144

For a meshM with the edge offset property, the Gauss image mesh S is a Koebe polyhe-

dron. Bobenko et al. [22] show that in case of quad meshes, S is a so-called s-isothermic

mesh and thus the mesh M is a discrete variant of a curvature line parameterization

whose Gauss image is an isothermic curve network. Such “L-isothermic surfaces” are

mentioned by Blaschke [16], but not much seems to be known about their shapes. Like-

wise, the description of the possible shapes obtainable by quadrilateral EO meshes is an

unsolved problem at the present time.

Hexagonal meshes, which here is a synonym for meshes with planar faces and vertices of

valence three, have better approximation properties (cf. e.g. [39]). In order to create a

hexagonal EO Mesh M which approximates a given surface Φ, we could start with any

Koebe polyhedron S which is a hexagonal mesh (cf. Figures 7.10 and 7.18) and determine

the vertices mi ofM as follows: Parallel translate the three planes which are adjacent to

the vertex si in the mesh S so that they touch Φ, and intersect them. By construction,M
has the edge offset property and the planes which carry its faces touch Φ. Unfortunately

it is apparently difficult to guarantee that M is a nice polyhedral surface without self-

intersections, so much work remains to be done before such a procedure can be used as

an effective design tool. We does not enter the topic of approximating general surfaces

with hex meshes.

M

S
Figure 7.11: Edge offset mesh of negative curvature. The mesh M with pentagonal
faces has a parallel mesh S whose edges are tangent to the unit sphere, so M has the
edge offset property. Corresponding edges ofM and S are parallel, but the correspon-
dence is orientation-reversing for some edges. The general pattern which edges keep
their orientation and which do not is indicated by the schematic diagram. The mesh S
is a Koebe polyhedron; M was found by minimizing the Laplacian energy of Equation
(7.3) in the space P(S), under appropriate sign constraints on the coefficients λij of

Equation (7.1).

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 145

7.4 Optimizing Support Structures

In view of Proposition 7.2 we cannot expect a general mesh with planar faces which is

neither circular nor conical to have vertex offsets or face offsets. The class of meshes with

edge offsets is even more restricted, as discussed in Sections 7.3.2 and 7.3.3. Therefore

the problem of constructing offsets at approximately constant distance is important. This

section first discusses such approximate offset meshes from a theoretical viewpoint, and

then shows how to compute them by minimizing a quadratic function in the space P(M).

We also treat the problem of finding a mesh with planar faces which approximates a

given shape in the first place. This completes the processing pipeline from shape to

mesh, and further to support structure. The last part of this section deals with more

complex optimization problems.

7.4.1 Approximate offsets

The mesh M′ which is parallel to the mesh M is said to be an approximate offset of

M, if M′ =M+ dS, where S ∈ P(M) is a mesh which approximates the unit sphere.

We say that the distance of M′ from M is approximately constant, and that S is an

approximate Gauss image of M. As there are different kinds of (exact) Gauss image

anyway, we will drop the attribute ‘approximate’ and simply speak of a Gauss image.

The vertex si of S corresponding to a vertex mi of M is considered as an approximate

normal vector for the vertex mi. Then the approximate offset at distance d has vertices

mi + dsi, which is directly analogous to the previous notation (see Figure 7.12). We use

the symbol σ : M → S for the natural correspondence between the meshes M and S
(σ is the Gauss mapping). The computation of an approximate Gauss image for a given

mesh with planar faces is discussed in Sections 7.4.2 and 7.4.3 below.

7.4.2 Offset meshes by optimization in P(M)

We approach the problem of computing offsets at approximately constant distance as

follows: For a given mesh M we must find a mesh S ∈ P(M) which approximates the

unit sphere (S is a Gauss image ofM). We can convert this problem into minimization

of a quadratic functional: For each face F , we have its normal vector nF , and a vertex

mi(F) ∈ F . For each vertex mi, we estimate a unit normal vector ñi. The vertex of S
corresponding to the vertex mi is denoted by si. We set up the functionals

ffaces =
∑

faces F

(nF · (si(F) − nF))2, fvert =
∑

vertices mi

(si − ñi)2,

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 146

S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M)S = σ(M) M+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dSM+ dS

M

mj

mj + dsj

si

sj

mi
mi + dsi

Figure 7.12: This figure illustrates how we assign a geometric support structure to a
given mesh M and thus make it buildable with optimized nodes and controlled beam
heights. Optimization in the space P(M) yields a parallel mesh S approximating the
unit sphere S2, thus defining offsetsM′ =M+ dS at approximately constant distance
d. Here S has an overfolding due to a change in the sign of curvature in M, and is

contained in the layer between radii 0.98 and 1.04.

and minimize a linear combination of ffaces, fvert, and the fairness functional fLaplacian of

Equation (7.3) (here each term of ffaces is the distance from si to its parallel face and each

term of fvert is the difference from si to the vertex normal). The aims fvert → min and

ffaces → min express the requirement that indeed the mesh S is an (approximate) Gauss

image of M. Results are shown by Figures 7.12 and 7.13. Also the processing pipeline

described in Section 7.4.3 uses this construction (cf. Figure 7.14). We may assign a low

weight to the fairness term for S, as a lack of fairness for S is hardly noticeable in the

support structure (Figure. 7.14d). It may be more important that beam heights are

approximately constant.

7.4.3 A processing pipeline from shape to beam layout

Section 7.4.2 describes how we can find, for a given mesh M with planar faces, an

approximate offset, which can be used e.g. for the definition of beams of approximately

constant heights. This section considers also the problem which in the overall processing

pipeline comes earlier: How to find a mesh which has planar faces and approximates a

given shape.

We compute a quad-dominant mesh with planar faces for a given surface by optimizing

a mesh which follows a network of conjugate curves (of which Figures 7.14, a–c show

some examples). Obviously the angle of intersection of such curves is important for the

quality of the mesh, but for negatively curved surfaces it is not guaranteed that a network

of conjugate curves has only transverse intersections. The special case of principal

curvature lines has an intersection angle of 90◦ throughout the network. However, we

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 147

(a) (b)

(c) (d)
Figure 7.13: This figure illustrates that finding a support structure according to the
method of Section 7.4.2 can be done with little change in the original mesh. (a) a
mesh M created by subdivision. (b) In order to create a geometric support structure
with nice offset properties, we first make the mesh conical by perturbing vertices. As
the intersection angles of mesh polylines in M are far from 90 degrees, the optimized
mesh deviates much from M. (c) If M is optimized to become planar, not necessarily
conical, the deviations from the original mesh are small. (d) We apply our procedure

for creating a support structure with approximately constant beam heights.

would like to have more degrees of freedom at our disposal when choosing the curve

network.

Figure 7.14 illustrates our approach to this problem. We apply an affine transformation

α to the given surface, compute principal curvature lines for the transformed surface,

and transform them back with α−1. Conjugacy of curves is invariant with respect to

affine transformations, and the intersection angle of the resulting curves is close to 90◦ if

α is close to the identity transformation. So we are able to create a number of suitable

curve networks simply by choosing different affine mappings (see Figures 7.14, a–c).

We then lay out a quad-dominant mesh along a curve network which fits the design

intent best, e.g. has few singularities, or has the singularities in the right places (we

choose Figure 7.14c). This mesh is optimized such that its faces become planar (cf.

Chapter 6). Having computed the mesh M, we next need to find a support structure

with beams of approximately constant height. This is done by finding a mesh S ∈ P(M)

which approximates S2, using the minimization procedure described in Section 7.4.2. A

result is shown by Figure 7.14d. The geometric support structure which is bounded by

the meshes M and M′ =M+ dS is illustrated by Figure 7.14e.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 148

(a) (b) (c)

(d)

(e)
Figure 7.14: Meshing and construction of a support structure with optimized nodes
for a given architectural freeform design. (a)–(c). A study of different conjugate curve
networks is performed. We lay out a quad mesh M along the network in (c) and use
the method in Chapter 6 to optimizeM such that its faces become planar. M is shown
in subfigure (e). (d) We recompute a Gauss image S ofM which approximates the unit
sphere S2. (e) S leads to a support structure with optimized nodes and approximately

equal beam heights for M.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 149

7.4.4 Other ways of optimization

Combined optimization of mesh and Gauss image.

Section 7.4.2 discussed the problem of computing a geometric support structure – or an

approximate Gauss image S – for a given mesh M, and in that section we described

how to solve that problem by quadratic optimization in the space P(M). Here we go

one step further and optimize both M and S at the same time.

The purpose of this computation is to design a mesh which has offset or curvature

properties useful for architectural design. We know that any such mesh has to ap-

proximately follow a network of principal curves. We start with a mesh with this

property and set up an optimization problem as follows. We consider the function-

als fclose,1 :=
∑

i dist(mi,Φ)2 and fclose,2 :=
∑

i ‖si‖2, which express proximity of the

vertices of M,S to their respective reference surfaces Φ, S2; further, the functional

fpar :=
∑

edges mimj

‖ mi −mj

‖mi −mj‖
× (si − sj)‖2,

which expresses parallelity of meshes M and S; the fairness functionals fLaplacian(M),

fLaplacian(S) according to Equation (7.3); and the functional fdet which expresses pla-

narity of the meshM. We then use a penalty method to minimize a linear combination

of the functionals above. Other functionals may be included. An example which includes

a functional aiming at constant mean curvature is presented in Section 7.5 (Figure 7.19).

Methods of optimization and numerics.

The solution of the nonlinear optimization problems which arise when minimizing the

functionals above, under the side condition of planarity of faces and parallelity of meshes,

usually is difficult. We have employed a penalty method analogous to the mesh opti-

mization procedure described in Chapter 6. In order to minimize a functional F under

k different constraints G1 = 0, . . . , Gk = 0, we consider the auxiliary minimization prob-

lem λF +
∑
µjG

2
j → min: For stable convergence, λ has a higher value at the beginning,

and tends to zero as optimization progresses. The unconstrained minimization problem

λF+
∑
µjG

2
j → min can effectively be solved by the Gauss-Newton method with LM reg-

ularization [74]. In our case, F is a linear combination of fclose,1, fclose,2, fLaplacian(M),

fLaplacian(S), while the constraints are given by fdet and fpar. This method usually

requires user interaction when balancing the weights of the individual functionals.

Translating the Gauss image.

We want to mention a simple fact which nevertheless has an interesting application: If

S is a Gauss image for the mesh M, then formally any translate S ′ = S + x is a valid

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 150

Gauss image, simply because it was never specified how well S ′ must approximate the

unit sphere, and meshes S ′ and M are parallel. It is a different question if we can still

call the vertices of S ′ normal vectors of the polyhedral surface M without violating

geometric intuition, but if x is small, we surely can (see Figure. 7.15).

Figure 7.1 shows an architectural design based on a meshM and two different geometric

support structures: One is defined by a Gauss image mesh S whose edges are tangent to

S2. It is used to create the supporting beams (then of constant height). The other one

is based on the Gauss image S ′ = S + x, and is physically realized as shading elements.

The vector x has been found by subjecting it to optimization: We select parallel light

(for particular sun positions) and compute x such that the total area of shadow cast by

the shading elements is maximal, under the constraint ‖x‖ ≤ 0.99.

7.5 Curvatures in Meshes with Planar Faces

It has been observed many times that properties of smooth or discrete surfaces which are

interesting from the mathematical viewpoint often lead to very aesthetic figures [139].

This is even more important in our current work which focuses on architecture and

design. Therefore the aim of this section on curvatures is not only to create geometric

functionals useful for smoothing and other optimization tasks, but to lay the foundations

for interactive design and form finding tools. We want to demonstrate that the earlier

developed theory, namely offset properties and support structures based on parallelism,

is compatible with the second one, namely the definition of curvatures based on mesh

parallelism. Not only they are compatible, but surfaces of constant or vanishing mean

curvature, as well as other special surfaces, serve as basis of architectural designs with

functional properties.

Preparation: Mixed areas and Steiner’s formula.

M M
Figure 7.15: These two systems of ‘approximate normal vectors’ of a mesh M are
defined by a Gauss image S, whose edges are tangent to S2 (left image), and the Gauss
image S + x (right image). They correspond to the two different support structures

employed in Figure. 7.1.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 151

Assume that P = (p0, . . . ,pk−1) and Q = (q0, . . . ,qk−1) are planar polygons whose

corresponding edges are parallel (‘parallel polygons’). Then also the polygon P + dQ =

(p0 + dq0, . . .) is parallel to P and Q. We are interested in the oriented area of P + dQ,

with the orientation defined by a normal vector n of the plane which contains P . Its

computation is based on the formula 1
2 det(b−a, c−a,n) for the area of a triangle with

vertices a,b, c, lying in a plane with unit normal vector n. It follows that area(P+dQ) =
1
2

∑k−1
i=0 det(pi + dqi,pi+1 + dqi+1,n), with indices modulo k. This implies that

area(P + dQ) = area(P) + 2d area(P,Q) + d2 area(Q), with

area(P,Q) =
1
4

k−1∑
i=0

[det(pi,qi+1,n) + det(qi,pi+1,n)]. (7.4)

The computation so far is well known – area(P,Q) denotes the mixed area of polygons

P and Q in the terminology of convex geometry [132].

PPPPPPPPPPPPPPPPP

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0 p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

QQQQQQQQQQQQQQQQQ

q0q0q0q0q0q0q0q0q0q0q0q0q0q0q0q0q0 q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1

q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q3q3q3q3q3q3q3q3q3q3q3q3q3q3q3q3q3

ooooooooooooooooo

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

P+0.4Q
P+0.2Q
P
P−0.2Q
P−0.4Q
P−0.6Q

Figure 7.16: Parallel polygons with vertices pi, qi, and pi + dqi.

Curvatures of faces.

Curvatures in polyhedral surfaces can be defined in different ways. One may be guided

by the idea that a discrete surface approximates a smooth one, and define a curvature

by way of numerical differentiation. Another method is to observe relations between

curvatures and geometric properties in smooth surfaces, and to postulate an analogous

relation for the discrete case, like in the definition of the mean curvature vector by

Polthier [108] as the gradient of the area functional for triangle meshes. In our setting

we consider the variation of surface area when passing from a surface Φ to an offset

surface Φd: Each point x ∈ Φ is moved to x + dn(x), where “n” is the field of unit

normal vectors. Then the surface area changes according to

area(Φd) = ∫Φ
(
1− 2dH(x) + d2K(x)

)
dx, (7.5)

with H as mean and K as Gaussian curvature (Steiner’s formula). In the discrete case

the change in area exhibits a quite similar behavior:

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 152

Proposition 7.5. The surface area of the (approximate) offset Md = M + dS of the

mesh M w.r.t. to the Gauss image mesh σ(M) = S obeys the law

area(Md) =
∑

F: face of M
(1− 2dHF + d2KF) area(F), with (7.6)

HF = −area(F, σ(F))
area(F)

, KF =
area(σ(F))

area(F)
. (7.7)

Here each face F of M is oriented such that area(F) > 0.

Proof. It is sufficient to show (7.6) and (7.7) for a single face F . This follows directly

from (7.4) by comparing coefficients.

When we compare Equations (7.5) and (7.6), we see that it is natural to define mean

curvature and Gaussian curvature of the face F by the quantities HF and KF given by

(7.7). This definition of curvatures does not refer to the mesh M alone, but implicitly

assumes that the Gauss image mesh S is given. The values of HF and KF behave

exactly like they should also in other respects. One is that the Gaussian curvature is

the quotient of areas between Gauss image and original surface, as in the smooth case.

Another one is that for most faces F , meaningful principal curvatures κ1,F , κ2,F can be

defined, such that

HF = (κ1,F + κ2,F)/2, KF = κ1,Fκ2,F .

The curvatures κ1,F , κ2,F are the roots of the polynomial f(x) = x2− 2HFx+KF ; they

exist if and only if

H2
F −KF ≥ 0.

We do not give details, but it is not difficult to show that this inequality is true whenever

the face F , or its Gauss image σ(F) is strictly convex. This follows from Minkowski’s

first inequality “area(P,Q)2 − area(Q) area(P) ≥ 0”, which applies when both P,Q are

convex [132].

Meshes of constant mean curvature.

Discrete surfaces of constant mean curvature HF (cmc meshes) or discrete minimal

surfaces, which have HF = 0, are interesting not only from the purely mathematical

viewpoint, but also from the viewpoint of aesthetics. The condition that a meshM has

constant curvatures with respect to a Gauss image mesh S is not as rigid as one might

expect, and it is possible to construct a great variety of such meshes (both quadrilateral

and hexagonal), even meshes with the edge offset property.

First we discuss minimal meshes. The condition of minimality means that for all faces

F , we have HF = 0, and consequently the parallel polygons F and σ(F) have vanishing

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 153

QijQijQijQijQijQijQijQijQijQijQijQijQijQijQijQijQij

Q∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ijQ∗ij

SSSSSSSSSSSSSSSSS MMMMMMMMMMMMMMMMM

1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1∗1
∗1∗1∗1∗

2∗2∗2∗2∗2∗2∗2∗2∗2∗2∗2∗2∗2∗2
∗2∗2∗2∗

3∗3∗3∗3∗3∗3∗3∗3∗3∗3∗3∗3∗3∗3
∗3∗3∗3∗

4∗4∗4∗4∗4∗4∗4∗4∗4∗4∗4∗4∗4∗4
∗4∗4∗4∗

11111111111111111

22222222222222222

33333333333333333

44444444444444444

S

M

Figure 7.17: Construction of simple minimal quad meshes via parallelity of diago-
nals. The meshes M,S carry ‘horizontal’ polylines in horizontal planes and ‘meridian
polylines’ in planes through a fixed axis. S,M are parallel – note corresponding faces
Qij and Q∗ij – but the correspondence is orientation-reversing. The mean curvature of
the face Qij in the mesh M with respect to the Gauss image S vanishes if and only if

diagonals in Qij are parallel to diagonals in Q∗ij (13 ‖ 2∗4∗ and 24 ‖ 1∗3∗).

mixed area. It is easy to show that in the case of parallel quadrilaterals Q = 1234 and

Q∗ = 1∗2∗3∗4∗, we have

area(Q,Q∗) = 0 ⇐⇒ 13 parallel 2∗4∗, 24 parallel 1∗3∗ (7.8)

(see Figure 7.17). It is worth noting that this parallelity of diagonals in corresponding

quads also occurs in the Christoffel duality constructions of [17] and [22], which has

gone unnoticed so far. For this reason we would like to call parallel meshes Christoffel

transforms of each other, if corresponding faces have vanishing mixed area.

We should note that not every mesh S has the property that there exists a mesh M
which is minimal with respect to S as Gauss image. In the following we therefore restrict

ourselves to special cases.

Example: minimal and cmc quad meshes of simple geometry. For quad meshes M and

S of ‘generalized rotational symmetry’ as described by Figure. 7.17, we can construct

a minimal mesh M for given S by starting with one vertex, say the one denoted by

“1”, and computing the faces of M step by step. They are uniquely determined by the

requirements of parallelity of edges and parallelity of diagonals. The construction of

a cmc mesh M from S is quite analogous to the minimal surface case; instead of the

condition HF = 0 we have now HF = const (we omit the details) Surfaces of revolution

where the vertices of the Gauss image mesh S lie in the unit sphere (and therefore M
is a circular mesh), have been considered by [64].

Example: Hexagonal meshes of rotational symmetry which have vanishing or constant

mean curvature. The previous example concerning quad meshes extends to hex meshes

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 154

S

M

Figure 7.18: A discrete minimal EO mesh. The mesh M is constructed from the
Koebe polyhedron S by the conditions thatM and S are parallel meshes, and that the
mixed areas of all corresponding faces vanish. BothM and S have rotational symmetry.
The correspondence betweenM and S is orientation-reversing for some edges; the sign

pattern is schematically illustrated at right.

as well, if we restrict ourselves to meshes with rotational symmetry (see Figures 7.10,

7.18, and 7.19). We do not provide details here, because they are not difficult and would

take up too much space. We only mention that by splitting symmetric hexagons into

quads we can treat this case in a way very similar to the previous example.

7.6 Discussion

Limitations.

With highly nonlinear optimization problems, there is in general no guarantee that

optimization achieves success and is not stuck in a local minimum. Therefore it is very

important to know beforehand which meshes can be optimized towards the goal under

consideration. E.g. if a quad-dominant mesh is to become planar by moving vertices

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 155

Figure 7.19: This design with convex faces is composed from pieces of discrete cmc
surfaces obtained in different ways. The junction piece (quad mesh) was originally
computed as a trinoid (cf. [25, 130]) by the applet at [129]. After combined optimization
of mesh and Gauss image in order to achieve planarity of faces and HF = const ., we
arrive at a planar quad mesh which has HF ∈ [0.966, 1.048]. The bulging pieces are
hexagonal EO meshes whose mean curvature with respect to a previously chosen Koebe

polyhedron as Gauss image is exactly constant.

as little as possible, then this mesh must originally have been aligned with a conjugate

network of curves. We did not experience problems when the original mesh was chosen

appropriately. However, this issue is very important for applications in practice. We

also emphasized on easier optimization tasks like optimization in P(M) for computing

a support structure, which exhibit quite tame behaviour.

The complexity of the modeling task shown by Figure 7.14 is rather high. It is hard

to satisfy all design requirements if the underlying reference surface is not very smooth.

This problem becomes even more severe if boundary conditions have to be met. As a

consequence it would be difficult to find a geometrically optimal support structure for

data sets like the Stanford bunny, for instance. Fortunately, architectural designs tend

to be smoother.

Implementation and run times.

The most computationally expensive tasks in our work are nonlinear optimization pro-

cedures, for which we employed a Gauss-Newton method, and computing a basis of

P(M) which is done by SVD. SVD runs well even if it needs a long run time, because

we estimate the dimension of P(M) beforehand. The run times of code on a 2 GHz

PC with 1 GB RAM are as follows: Computation of principal curves in Figure. 7.14a–c

and meshing costs 25 seconds each. The resulting mesh M has 649 vertices and 568

faces. Planarization costs 3 seconds, and a basis of P(M) is computed with SVD in 4.4

minutes; the Gauss image of Figure. 7.14d takes 0.68 seconds to compute. As to Figure.

Chapter 7. Geometry of Multi-layer Freeform Structures for Architecture 156

7.19, simultaneous optimization of the mesh and its Gauss image towards H = const.

needs 3 minutes.

Conclusion.

We have presented mesh parallelism as a basic method for the solution of problems which

occur in the design and construction of architectural freeform structures. It allows us

to find an optimized beam layout with torsion free nodes, even after the design phase

when we are just given a mesh with planar faces. Moreover, it is a key tool for mod-

eling meshes with special offset properties. We introduced the new class of edge offset

meshes which yield the cleanest possible nodes, if built with beams of constant height.

Our results apply to EO quad meshes as well as to the more flexible pentagonal and

hexagonal meshes. As a contribution to aesthetic design and a component for geomet-

ric optimization algorithms, we introduced a novel discrete curvature theory which is

based on parallel meshes. In our examples we have pointed to invariance under certain

transformations, which turned out to be of great practical value (blending of meshes,

Laguerre transformations).

Claim: the presented material in this chapter has been published in [121].

Chapter 8

Conclusion and Future Research

8.1 Principal Contributions

In this thesis, we focus on the optimal shape reconstruction in curve and surface fitting

and registration, and geometry modeling for architecture. The contributions of the

present work are as follows:

• A thorough and systematical study of least squares orthogonal distance fitting of

parametric curves and surfaces is presented. Effective and efficient methods based

on local geometric properties have been proposed and analyzed in the numerical

optimization framework. The proposed and improved methods including SDM,

TDM, CDM and GTDM have super-linear convergence and have been successfully

applied in 2D/3D, high-dimensional curve and surface fitting and constrained 3D

shape reconstruction. The detailed discussion and comparison between PDM and

other type methods from the point of view of geometry and optimization explain

the poor behavior of PDM, although, which is widely used. Our proposed methods

and easy implementation will benefit many industrial applications;

• We prove that the piecewise CVT function is C2 in a 2D/3D convex region and

accelerate the CVT computation by applying quasi-Newton methods that are much

more efficient than Lloyd’s method both in convergence rate and computation time.

• The introduced conical meshes and edge-offset meshes enrich the research of dis-

crete differential geometry and demonstrate their superiority over other types of

meshes, such as triangular meshes for architecture design and other applications

where planarity and exact offset properties are demanded. The proposed PQ per-

turbation algorithms with subdivision are powerful tools for computing PQ meshes

and developable meshes;

157

Chapter 8. Conclusion and Future Research 158

• The concept of mesh parallelism is an elegant approach to modeling offsets, multi-

layer structures and geometrically optimized nodes. It provides a unified compu-

tational framework for circular meshes, conical meshes and edge-offset meshes. A

discrete theory of curvature for meshes with planar faces analogous to the small

theory is developed based on mesh parallelism and is very useful and powerful to

generate discrete minimal surfaces, CMC surfaces in polyhedral meshes (quadri-

lateral, pentagonal and hexagonal meshes);

8.2 Future Research

There are many interesting problems which are worth studying. Some of these problems

have been addressed in preceding chapters.

• We have explored the relationship between the optimization technique and geo-

metrical error in least squares orthogonal distance fitting of parametric curves and

surfaces, a natural extension of this work is to study the geometry behind methods

for implicit curve/surface fitting. It is interesting to see how the local differential

geometrical properties of implicit curve/surface are involved in the optimization

methods, and find some geometric variation to simplify optimization methods and

speed up the optimization;

• The generation of conical meshes and edge-offset meshes rely on the initial input

meshes. The quality of the initial meshes affects the final result. For instance, the

size and shape of planar faces, the shape of curve network affect the aesthetics,

thus it would be very helpful to design modeling tools to construct and modify the

initial meshes interactively, and derive good criterion to characterize aesthetical

properties;

• Polyhedral meshes including quadrilateral meshes, hexagonal meshes have good

potential in future geometric design and are deserved to have more attention. Some

possible research topics include polyhedral mesh approximation, the shape control

of polyhedral faces, discrete differential geometry and finite element analysis on

polyhedral meshes, static equilibrium of polyhedral structures for architecture con-

struction.

Bibliography

[1] S. J. Ahn. Least Squares Orthogonal Distance Fitting of Curves and Surfaces in

Space, volume 3151 of Lecture Notes in Computer Science. Springer, 2004.

[2] E. Akleman, V. Srinivasan, and E. Mandal. Remeshing schemes for semi-regular

tilings. In Shape Modeling and Applications, Proceedings, pages 44–50. IEEE, 2005.

ISBN 076952379X.

[3] P. Alliez, D. Cohen-Steiner, O. Devillers, and B. Levyand M. Desbrun. Anisotropic

polygonal remeshing. ACM Trans. Graphics (Siggraph 2003), 22(3):485–493, 2003.

[4] P. Alliez, É. C. de Verdière, O. Desvillers, and M. Isenburg. Centroidal voronoi

diagrams for isotropic surface remeshing. Graphical Models, 67(3):204–231, 2003.

[5] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M.Desbrun. Variational tetrahe-

dralmeshing. ACM Transactions on Graphics (Proceeding of SIGGRAPH 2005),

24(3):617–625, 2005.

[6] L. Ambrosio and C. Montegazza. Curvature and distance function from a manifold.

Journal of Geometric Analysis, 8(5):723–748, 1998.

[7] Y. Asami. A note on the derivation of the first and second derivatives of objective

functions in geographical optimization problems. Journal of Faculty of Engineer-

ing, The University of Tokyo(B), XLI(1):1–13, 1991.

[8] A. Atieg and G. A. Watson. A class of methods for fitting a curve or surface

to data by minimizing the sum of squares of orthogonal distances. Journal of

Computational and Applied Mathematics, 158:227–296, 2003.

[9] G. Aumann. Degree elevation and developable Bézier surfaces. Comp. Aided

Geom. Design, 21:661–670, 2004.

[10] F. Aurenhammer. Voronoi diagrams – survey of a fundamental geometric data

structure. ACM Comput. Surv., 23(3):345–405, 1991.

[11] P. Benkö, G. Kos, T. Varady, L. Andor, and R. Martin. Constrained fitting in

reverse engineering. Computer Aided Geometric Design, 19:173–205, 2002.

159

Bibliography 160

[12] M. Bercovier and M. Jacob. Minimization, constraints and composite Bézier

curves. Computer Aided Geometric Design, 11(5):533–563, 1994.

[13] P. J. Besl and N. D. McKay. A method for registration of 3D shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14:239–256, 1992.

[14] A. Bjorck. Numerical Methods for Least Squares Problems. Mathematics Society

for Industrial and Applied Mathematics, Philadelphia, 1996.

[15] A. Blake and M. Isard. Active Contours. Springer, 1998.

[16] W. Blaschke. Vorlesungen über Differentialgeometrie, volume 3. Springer, 1929.

[17] A. Bobenko and U. Pinkall. Discrete isothermic surfaces. J. Reine Angew. Math.,

475:187–208, 1996.

[18] A. Bobenko and B. Springborn. Variational principles for circle patterns and-

Koebe’s theorem. Trans. Amer. Math. Soc., 356:659–689, 2004.

[19] A. Bobenko and Y. Suris. Discrete differential geometry.Consistency as integra-

bility. monograph pre-published athttp://arxiv.org/abs/math.DG/0504358, 2005.

[20] A. Bobenko and Y. Suris. On organizing principles of discrete differential ge-

ometry,geometry of spheres. to appear. http://arxiv.org/abs/math.DG/0608291,

2006.

[21] A. Bobenko, D. Matthes, and Y. Suris. Discrete and smooth orthogonal systems:

C∞-approximation. Int. Math. Res. Not., (45):2415–2459, 2003. ISSN 1073-7928.

[22] A. Bobenko, T. Hoffmann, and B. A. Springborn. Minimal surfaces from circle

patterns:geometry from combinatorics. Annals of Mathematics, 164:231–264, 2006.

[23] J-D Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University

Press, 1998. ISBN 0521565294.

[24] C. F. Borges and T. Pastva. Total least squares fitting of Bézier and B-spline

curves to ordered data. Computer Aided Geometric Design, 19(4):275–289, 2002.

[25] K. Große-Brauckmann and K. Polthier. Constant mean curvature surfaces derived

from Delaunay’s and Wente’s examples. In Visualization and mathematics (Berlin-

Dahlem, 1995), pages 119–134. Springer, 1997.

[26] S. Brell-Cokcan and H. Pottmann. Tragstrukturfür Freiformflächen in Bauwerken.

Patent No. A1049/2006, 2006.

[27] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound

constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208, 1995.

Bibliography 161

[28] T. Cecil. Lie Sphere Geometry. Springer, 1992.

[29] E. Cerda, S. Chaieb, F. Melo, and L. Mahadevan. Conical dislocations in crum-

pling. Nature, 401:46–49, 1999.

[30] Y. Chen and G. Medioni. Object modeling by registration of multiple range images.

Image and Vision Computing, 10(3):145–155, 1992.

[31] K.-S. D. Cheng, W. Wang, H. Qin, K-Y K. Wong, H-P Yang, and Y. Liu. De-

sign and analysis of optimization methods for subdivision surface fitting. IEEE

Transactions on Visualization and Computer Graphics, 13(5):878–890, 2007.

[32] C. H. Chu and C. Sequin. Developable Bézier patches: properties and design.

Computer-Aided Design, 34:511–528, 2002.

[33] R. Cipolla and P. Giblin. Visual Motion of Curves and Surfaces. Cambridge

University Press, 2000.

[34] U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and local classifica-

tion for surfaces based on moment analysis. IEEE Trans. Visual. Comp. Graphics,

10:516–524, 2004.

[35] D. Cohen-Steiner and J.-M. Morvan. Restricted Delaunay triangulations and nor-

mal cycle. In Proc. 19th annual symposium on Computational geometry, pages

312–321. ACM, 2003. ISBN 1-58113-663-3.

[36] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation.

ACM Trans. Graphics, 23(3):905–914, 2004.

[37] J. Cortés, S. Mart́ınez, and F. Bullo. Spatially-distributed coverage optimization

and control with limited-range interactions. ESAIM: Control, Optimisation and

Calculus of Variations, 11(4):691–719, 2005.

[38] B. Curless and M. Levoy. A volumetric method for building complex models from

range images. Computer Graphics, 30:303–312, 1996.

[39] B. Cutler and E. Whiting. Constrained planar remeshing for architecture. In Proc.

Graphics Interface. 2007.

[40] M. Desbrun, E. Grinspun, and P. Schröder. Discrete Differential Geometry. SIG-

GRAPH Course Notes, 2005.

[41] M. Djebali, M. Melkemi, and N. Sapidis. Range-image segmentation and model

reconstruction based on a fit-and-merge strategy. In Proceedings of the Seventh

ACM Symposium on Solid Modeling and Applications, pages 127–138, 2002.

Bibliography 162

[42] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.

[43] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral

remeshingof arbitrary manifolds. Comp. Aided Geom. Design, 22:392–423, 2005.

[44] Q. Du and M. Emelianenko. Acceleration schemesfor computing centroidal voronoi

tessellations. Numerical Linear Algebra with Applications, 13:173–192, 2006.

[45] Q. Du and M. Gunzburger. Grid generation and optimization based on centroidal

voronoi tessellations. Applied Mathematics and Computation, 133(2-3):591–607,

2002.

[46] Q. Du and D. Wang. Tetrahedral mesh generation and optimization based on

centroidal voronoi tessellations. International Journal for Numerical Methods in

Engineering, 56(9):1355–1373, 2003.

[47] Q. Du and D. Wang. Anisotropic centroidal voronoi tessellations and their appli-

cations.

[48] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: applica-

tions and algorithms. SIAM Review, 41:637–676, 1999.

[49] Q. Du, M. Gunzburger, and L. Ju. Constrained centroidal voronoi tesselations for

surfaces. SIAM J. SCI. COMPUT., 24(5):1488–1506, 2003.

[50] Q. Du, M. Emelianenko, and L. Ju. Convergence of the lloyd algorithm for com-

puting centroidal voronoi tessellations. SIAM J. NUMBER. ANAL., 44:102–119,

2006.

[51] M. J. B. Durrande. Questions résolues, démonstration du théorème de géométrie

énoncé à la page 384 du Ve volume de ce recueil. Ann. de math. pures appl., 6:

49–54, 1815.

[52] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design: A

Practical Guide. Academic Press, New York, 4th edition, 1997.

[53] R. B. Fisher. Applying knowledge to reverse engineering problems. Computer-

Aided Design, 36:501–510, 2004.

[54] D. R. Forsey and R. H. Bartels. Surface fitting with hierarchical splines. ACM

Transactions on Graphics, 14:134–161, 1995.

[55] W. Frey. Modeling buckled developable surfaces by triangulation. Computer-Aided

Design, 36(4):299–313, 2004.

Bibliography 163

[56] J. Glymph, D. Shelden, C. Ceccatoand, J. Mussel, and H. Schober. A parametric

strategy for freeform glass structures using quadrilateral planar facets. In Acadia

2002, pages 303–321. ACM, 2002.

[57] G. Golub and V. Pereyra. Separable nonlinear least squares: the variable projec-

tion method and its applications. Inverse Problems, 19:1–26, 2003.

[58] A. A. Goshtasby. Grouping and parameterizing irregularly spaced points for curve

fitting. ACM Transactions on Graphics, 19(3):185–203, 2000.

[59] G. Greiner, A. Kolb, and A. Riepl. Scattered data interpolation using data de-

pendant optimization techniques. Graphical Models, 64(1):1–18, 2002.

[60] J. Haber, F. Zeilfelder, O. Davydov, and H. P.Seidel. Smooth approximation and

rendering of large scattered data sets. In Proceedings of Visualization’01, pages

341–348, 2001.

[61] H.P. Helfrich and D. Zwick. A trust region algorithm for parametric curve and

surface fitting. Journal of Computational and Applied Mathematics, 73(1-2):119–

134, 1996.

[62] K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence of metric

and geometric properties of polyhedral surfaces. Technical Report 05-24, Zuse

Institute Berlin, 2005.

[63] M. Hofer, B. Odehnal, H. Pottmann, T. Steiner, and J. Wallner. 3D shape recog-

nition and reconstruction based on line element geometry. In ICCV ’05: Pro-

ceedings of the Tenth IEEE International Conference on Computer Vision, pages

1532–1538, 2005.

[64] T. Hoffmann. Discrete rotational CMC surfaces and the ellipticbilliard. In H. C.

Hege and K. Polthier, editors, Mathematical Visualization, pages 117–124. Sprin-

ger, 1998.

[65] H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH’96, pages 99–108,

1996.

[66] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,

J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruction. In Pro-

ceedings of SIGGRAPH’94, pages 295–302, 1994.

[67] J. Hoschek. Intrinsic parameterization for approximation. Computer Aided Geo-

metric Design, 5(1):27–31, 1988.

Bibliography 164

[68] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design.

AK Peters, 1993.

[69] S. M. Hu and J. Wallner. second order algorithm for orthogonal projection onto

curves and surfaces. Computer Aided Geometric Design, 22(3):251–260, 2005.

[70] M. Iri, K. Murota, and T. Ohya. A fast voronoi-diagram algorithm with appli-

cations to geographical optimization problems. In Proceedings of the 11th IFIP

Conference, pages 273–288, 1984.

[71] H. Jin, T. Duchamp, H. Hoppe, J. A. McDonald, K. Pulli, and W. Stuetzle. Surface

reconstruction from misregistered data. In Proceedings of SPIE – Volume 2573,

Vision Geometry IV, pages 324–328, 1995.

[72] D. Julius, V. Kraevoy, and A. Sheffer. D-charts: Quasi-developable mesh seg-

mentation. Computer Graphics Forum (Proc. Eurographics 2005), 24(3):581–590,

2005.

[73] A. Karniel, Y. Belsky, and Y. Reich. Decomposing the problem of constrained

surface fitting in reverse engineering. Computer-Aided Design, 37:399–417, 2005.

[74] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Ap-

plied Mathematics, Philadelphia, 1999.

[75] A. Kilian. Design exploration through bidirectionalmodeling of constraints. PhD

thesis, Massachusets Inst. Technology, 2006.

[76] S-J Kim and M-Y Yang. Triangular mesh offset for generalized cutter. Computer-

Aided Design, 37(10):999–1014, 2005.

[77] R. Kunze, F-E Wolter, and T. Rausch. Geodesic voronoi diagrams on parametric

surfaces. In Computer Graphics International, 1997. Proceedings, pages 230–237,

1997.

[78] S. Lavallee and R. Szeliski. Recovering the position and orientation of free-form ob-

jects fromimage contours using 3d distance maps. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17:378–390, 1995.

[79] E. T. Y. Lee. Choosing nodes in parametric curve interpolation. Computer-Aided

Design, 21(6):363–370, 1989.

[80] G. Leibon and D. Letscher. Delaunay triangulations and voronoi diagrams for

riemannian manifolds. In SCG ’00: Proceedings of the sixteenth annual symposium

on Computational geometry, pages 341–349, 2000.

[81] A. J. Lexell. Acta Sc. Imp. Petr., 6:89–100, 1781.

Bibliography 165

[82] Y. Liu, H-P Yang, and W. Wang. Reconstructing B-spline curves from point clouds

– a tangential flow approach using least squares minimization. In International

Conference on Shape Modeling and Applications 2005, pages 4–12, 2005.

[83] Y. Liu, H. Pottman, J. Wallner, Y. Yang, and W. Wang. Geometric modeling with

conical meshes and developable surfaces. ACM Transactions on Graphics (Proc.

SIGGRAPH 2006), 25(3):681–689, 2006.

[84] Y. Liu, H. Pottmann, and W. Wang. Constrained 3D shape reconstruction using

a combination of surface fitting and registration. Computer Aided Design, 38(6):

572–583, 2006.

[85] Yang Liu and Wenping Wang. A revisit to least squares orthogonal distance fitting

of parametric curves and surfaces. In Geometric Modeling and Processing - GMP

2008, pages 384–397. Springer, 2008.

[86] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information

Theory, 28(2):129–137, 1982.

[87] D. Luenberger. Linear and Nonlinear Programming. Addision-Wesley, 1984.

[88] W. Y. Ma and J. P. Kruth. Parameterization of randomly measured points for

least squares fitting of B-spline curves and surfaces. Computer-Aided Design, 27

(9):663–675, 1995.

[89] K. Madsen, H. B. Nielsen, and O. Tingleff. Optimization with constraints. Lecture

Notes, 2004.

[90] I. Maekawa and K.H. Ko. Surface construction by fitting unorganized curves.

Graphical Models, 64(5):316–332, 2002.

[91] T. Maekawa. An overview of offset curves and surfaces. Computer-Aided Design,

31:251–267, 1999.

[92] M. Marinov and L. Kobbelt. Direct anisotropic quad-dominant remeshing. In

Proc. Pacific Graphics, pages 207–216, 2004.

[93] R. R. Martin, J. de Pont, and T. J. Sharrock. Cyclide surfaces in computer aided

design. In J. A. Gregory, editor, The mathematics of surfaces, pages 253–268.

Clarendon Press, Oxford, 1986.

[94] H. Meinhardt. The Algorithmic Beauty of Sea Shells. Springer, 1995.

[95] J. Mitani and H. Suzuki. Making papercraft toys from meshes usingstrip-based

approximate unfolding. ACM Trans. Graphics, 23(3):259–263, 2004.

Bibliography 166

[96] J. Montagnat and H. Delingette. A hybrid framework for surface registration

and deformable models. In Computer Vision and Pattern Recognition, CVPR’97,

pages 1041–1046, 1997.

[97] D. J. Newman. The hexagon theorem. IEEE Transactions on Information Theory,

28:137–139, 1982.

[98] Y. Nishikawa, H. Jinnai, T. Koga, T. Hashimoto, and S. T.Hyde. Measurements

of interfacial curvatures of bicontinuousstructure from three-dimensional digital

images.1. a parallel surface method. Langmuir, 14:1241–1249, 1998.

[99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[100] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams. Wiley, 1st edition, 1992.

[101] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of

lloyd-type methods for the k-means problem. In 47th Annual IEEE Symposium

on Foundations of Computer Science (FOCS’06), pages 165–176, 2006.

[102] P. Oswald and P. Schröder. Composite primal/ dual
√

3-subdivision schemes.

Comp. Aided Geom. Design, 20:135–164, 2003.

[103] N. Paragios and M. Rousson. Shape analysis towards model-based segmentation.

In S. Osher and N. Paragios, editors, Geometric Level Set Methods in Imaging,

Vision and Graphics, pages 231–250. Springer, 2003.

[104] T. Pavlidis. Curve fitting with conic splines. ACM Transactions on Graphics, 2

(1):1–31, 1983.

[105] G. Peyré and L. Cohen. Surface segmentation using geodesic centroidal tessela-

tion. In 2nd International Symposium on 3D Data Processing, Visualization and

Transmission (3DPVT 2004), pages 995–1002, 2004.

[106] L. Piegl and W. Tiller. The NURBS Book. Springer, New York, 2nd edition, 1996.

[107] M. Plass and M. Stone. Curve-fitting with piecewise parametric cubics. Computer

Graphics, 17(3):229–239, 1983.

[108] K. Polthier. Polyhedral surfaces of constant mean curvature. Habilitationsschrift

TU Berlin, 2002.

[109] K. Polthier. Unstable periodic discrete minimal surfaces. In Nonlinear Partial

Differential Equations, pages 127–143. Springer, 2002.

Bibliography 167

[110] I. R. Porteous. Geometric Differentiation for the Intelligence of Curves and Sur-

faces. Cambridge Univ. Press, 1994.

[111] H. Pottmann and M. Hofer. Geometry of the squared distance function to curves

and surfaces. In H.-C. Hege and K. Polthier, editors, Visualization and Mathe-

matics III, pages 223–244. Springer, 2003.

[112] H. Pottmann and S. Leopoldseder. A concept for parametric surface fitting which

avoids the parametrization problem. Computer Aided Geometric Design, 20:343–

362, 2003.

[113] H. Pottmann and Y. Liu. Discrete surfaces in isotropic geometry. In M. Sabin and

J. Winkler, editors, Mathematics of Surfaces XII, volume 4647 of LNCS, pages

431–363, 2007.

[114] H. Pottmann and J. Wallner. The focal geometry of circular and conical meshes.

Advances in Computational Mathematics, 2008.

[115] H. Pottmann and J. Wallner. Computational Line Geometry. Springer, 2001.

[116] H. Pottmann, S. Leopoldseder, and M. Hofer. Approximation with active B-spline

curves and surfaces. In Proceedings of Pacific Graphics 2002, pages 8–25. IEEE

Computer Society Press, 2002.

[117] H. Pottmann, S. Leopoldseder, and M. Hofer. Registration without icp. Computer

Vision and Image Understanding, 95:54–71, 2004.

[118] H. Pottmann, Q.-X. Huang, and Y.-L. Yangand S. Kölpl. Integral invariants for

robust geometry processing. Geometry Preprint 146, TU Wien, 2005.

[119] H. Pottmann, A. Asperl, M. Hofer, and A. Kilian. Architectural Geometry. Bentley

Institute Press, 2007.

[120] H. Pottmann, S. Brell-Cokcan, and J. Wallner. Discrete surfaces for architectural

design. In P. Chenin, T. Lyche, and L. L. Schumaker, editors, Curves and Surface

Design: Avignon 2006, pages 213–234, 2007.

[121] H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, and W. Wang. Geometry of multi-

layer freeform structures for architecture. ACM Transactions on Graphics (Proc.

SIGGRAPH 2007), 26(3):#65,1–11, 2007.

[122] V. Pratt. Techniques for conic splines. In Proceedings of SIGGRAPH’85, pages

151–160, 1985.

[123] N. Ray, W.- C. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic global parameteri-

zation. ACM Trans. Graphics, 25(4):1460–1485, 2006.

Bibliography 168

[124] A. Ruhe and P. Wedin. Algorithms for separable nonlinear least squares problems.

SIAM Review, 22(3):318–337, 1980.

[125] B. Sarkar and C-H Menq. Parameter optimization in approximating curves and

surfaces to measurement data. Computer Aided Geometric Design, 8(4):267–290,

1991.

[126] R. Sauer. Differenzengeometrie. Springer, 1970.

[127] E. Saux and M. Daniel. An improved hoschek intrinsic parametrization. Computer

Aided Geometric Design, 20(8-9):513–521, 2003.

[128] W. K. Schief. On a maximum principle for minimal surfaces and theirintegrable

discrete counterparts. J. Geom. Physics, 56:1484–1495, 2006.

[129] N. Schmitt. Noid. Java Applet, http://www-sfb288.math.tu-berlin.de/∼nick/

Noid/NoidApplet.html, 2003.

[130] N. Schmitt. Constant mean curvature trinoids. preprint, http://www.arxiv.org/

math.DG/0403036, 2004.

[131] R. B. Schnabel and E. Eskow. A revised modified cholesky factorization algorithm.

SIAM J. on Optimization, 9(4):1135–1148, 1999.

[132] R. Schneider. Convex bodies: the Brunn-Minkowski theory. Cambridge University

Press, 1993.

[133] H. Schober. Freeform glass structures. In Glass Processing Days 2003, pages

46–50. Glass Processing Days, Tampere (Fin.), 2003. ISBN 952-91-5910-2.

[134] O. Schramm. Circle patterns with the combinatorics of the square grid. Duke

Math. J., 86:347–389, 1997.

[135] S. Sechelmann. Koebe polyhedron editor. Java Applet, http://www.math.tu-

berlin.de/geometrie/ps/software.shtml, 2006.

[136] C. Sequin. CAD tools for aesthetic engineering. CAD & Appl., 1:301–309, 2004.

[137] SG. The smart geometry group. http://www.smartgeometry.com.

[138] T. Speer, M. Kuppe, and J. Hoschek. Global reparameterization for curve approx-

imation. Computer Aided Geometric Design, 15(9):869–877, 1998.

[139] J. Sullivan. The aesthetic value of optimal geometry. In M. Emmer, editor, In

The Visual Mind II, pages 547–563. MIT Press, 2005.

[140] G. Taubin. Dual mesh resampling. Graphical Models, 64(2):94–113, 2002.

Bibliography 169

[141] D. Terzopoulos and K. Fleisher. Deformable models. Visual Computer, 4:306–331,

1988.

[142] Y. Tong, P. Alliez, D. Cohen-Steiner, and M.Desbrun. Designing quadrangulations

with discrete harmonic forms. In Symp. Geometry Processing, pages 201–210.

Eurographics, 2006.

[143] D. Tubic, P. Hebert, and D. Laurendeau. A volumetric approach for interactive

3D modeling. Computer Vision and Image Understanding, 92:56–77, 2003.

[144] S. Valette and J-M Chassery. Approximatedcentroidal voronoi diagrams for uni-

form polygonal mesh coarsening. Computer Graphics Forum (Eurographics 2004

proceedings), 23(3):381–389, 2004.

[145] S. Valette, J-M Chassery, and R. Prost. Generic remeshing of 3d triangular meshes

with metric-dependent discrete voronoi diagrams. IEEE Transactions on Visual-

ization and Computer Graphics, 2007.

[146] T. Várady and R. Martin. Handbook of Computer Aided Geometric Design, chapter

Reverse Engineering, pages 651–681. Elsevier, 2002.

[147] B. Vemuri and Y. Chen. Joint image registration and segmentation. In Geometric

Level Set Methods in Imaging, Vision and Graphics, pages 251–269. Springer,

2003.

[148] J. Wallner. Gliding spline motions and applications. Computer Aided Geometric

Design, 21(1):3–21, 2004.

[149] D. J. Walton and R. Xu. Turning point preserving planar interpolation. ACM

Transactions on Graphics, 10(3):297 – 311, 1991.

[150] C. Wang and K. Tang. Achieving developability of a polygonal surface by minimum

deformation: a study of global and local optimization approaches. Vis. Computer,

20:521–539, 2004.

[151] W. Wang, H. Pottmann, and Y. Liu. Fitting B-spline curves to point clouds by

curvature-based squared distance minimization. ACM Transactions on Graphics,

25:214–238, 2006.

[152] W. Wang, J. Wallner, and Y. Liu. An angle criterion for conical mesh vertices. J.

Geometry Graphics, 11:199–208, 2007.

[153] X. Corina Wang and C. Phillips. Multi-weight enveloping: least-squares approx-

imation techniques for skin animation. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics Symposium on Computer animation, pages 129 – 138, 2002.

Bibliography 170

[154] V. Weiss, L. Andor, G. Renner, and T. Várady. Advanced surface fitting tech-

niques. Computer Aided Geometric Design, 19(1):19–42, 2002.

[155] A. Willis, X. Orriols, and D. Cooper. Accurately estimating sherd 3d surface

geometry with application to pot reconstruction. In CVPR Workshop, 2003.

[156] W. Wunderlich. Zur Differenzengeometrie der Flächen konstanter negativer

Krümmung. Sitz. Öst. Ak. Wiss., 160:41–77, 1951.

[157] H. Yamauchi, S. Gumhold, R. Zayer, and H-PSeidel. Mesh segmentation driven

by Gaussian curvature. Visual Computer, 21:659–668, 2005.

[158] H. P. Yang, W. Wang, and J. G. Sun. Control point adjustment for B-spline curve

approximation. Computer-Aided Design, 36(7):639–652, 2004.

[159] M. Zacharias. Encykl. d. math. Wiss, volume volume III AB 9, chapter Elemen-

targeometrie und elementare nicht-euklidische Geometrie in synthetischer Behand-

lung. 1914.

[160] G. Ziegler. Lectures on Polytopes. Springer, 1995.

	Declaration
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Fitting B-spline Curves to Point Clouds by SDM
	2.1 Problem Formulation
	2.2 Related Work
	2.2.1 Spline curve fitting techniques
	2.2.2 Second order approximation to squared distance function

	2.3 Fitting a B-spline Curve to a Point Cloud Using SDM
	2.3.1 A new quadratic approximation to the squared distance
	2.3.2 Main steps of SDM

	2.4 Experiments and Comparison
	2.5 Implementation Issues
	2.5.1 Initialization and adjustment of control points
	2.5.2 Fast setup of error terms
	2.5.3 Fitting an open B-spline curve

	2.6 Discussion from Viewpoint of Optimization
	2.6.1 PDM as an alternating method
	2.6.2 TDM -- Gauss-Newton iteration and its variants
	2.6.3 SDM -- a quasi-Newton method
	2.6.4 Step size control

	2.7 Concluding Remarks

	3 Constrained 3D Shape Reconstruction
	3.1 Introduction
	3.1.1 Previous work
	3.1.2 Contributions

	3.2 Fundamentals of SDM
	3.2.1 Squared distance function of a surface
	3.2.2 Registration using SDM
	3.2.3 SDM for B-spline surface fitting
	3.2.4 TDM and PDM

	3.3 Combination of Surface Fitting and Registration
	3.4 Applications
	3.4.1 Surfaces of revolution
	3.4.2 Spiral surfaces
	3.4.3 Constrained 3D shape reconstruction
	3.4.3.1 Constrained fitting to a single set of data points
	3.4.3.2 Constrained fitting to multiple views

	3.4.4 Remarks on the implementation

	3.5 Conclusions

	4 Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces
	4.1 Introduction
	4.2 Preliminary
	4.2.1 Notation
	4.2.2 Nonlinear least squares
	4.2.3 Principal directions and curvatures of parametric curves and surfaces

	4.3 Orthogonal Distance Fitting
	4.3.1 Distance-based Gauss-Newton method
	4.3.2 Coordinate-based Gauss-Newton method
	4.3.3 SDM - modified Hessian approximation
	4.3.4 Comparisons

	4.4 Numerical Experiments
	4.5 Conclusions

	5 Computing Centroidal Voronoi Tessellation with Superlinear Convergence
	5.1 Introduction
	5.1.1 Problem setting and previous work
	5.1.2 The variational point of view

	5.2 Continuity Analysis
	5.2.1 Variational formulation
	5.2.2 Smoothness of F
	5.2.3 Experimental evidence of continuity

	5.3 Numerical Optimization
	5.3.1 Numerical examples

	5.4 CVT on Polyhedral Surfaces
	5.4.1 Constrained and restricted CVT
	5.4.2 C2 smoothness
	5.4.3 Implementation
	5.4.4 Experiments

	5.5 Appendix: Proof of Theorem 5.2

	6 Geometric Modeling with Conical Meshes and Developable Surfaces
	6.1 Introduction
	6.1.1 Previous work
	6.1.2 Contributions and overview

	6.2 PQ Meshes and PQ Perturbation
	6.2.1 PQ meshes
	6.2.2 PQ perturbation

	6.3 Subdividing Developables and PQ Meshes
	6.4 Conical Meshes
	6.5 Computing Conical Meshes
	6.6 Results and Discussion
	6.7 Conclusion and Future Work
	6.8 Appendix: An Angle Criterion for Conical Mesh Vertices
	6.8.1 Conical vertices
	6.8.2 Convex spherical quadrilaterals
	6.8.3 General spherical quadrilaterals

	7 Geometry of Multi-layer Freeform Structures for Architecture
	7.1 Introduction
	7.2 Mesh Parallelism for Architecture
	7.2.1 Motivation and introduction
	7.2.2 Basics of mesh parallelism

	7.3 Offset Meshes
	7.3.1 Types of exact offset meshes
	7.3.2 Meshes with edge offsets
	7.3.3 Designing with EO meshes

	7.4 Optimizing Support Structures
	7.4.1 Approximate offsets
	7.4.2 Offset meshes by optimization in P(M)
	7.4.3 A processing pipeline from shape to beam layout
	7.4.4 Other ways of optimization

	7.5 Curvatures in Meshes with Planar Faces
	7.6 Discussion

	8 Conclusion and Future Research
	8.1 Principal Contributions
	8.2 Future Research

	Bibliography

